X20(c)SLXxxx

Information:

B&R makes every effort to keep data sheets as current as possible. From a safety point of view, however, the current version of the data sheet must always be used.

The certified, currently valid data sheet can be downloaded from the B&R website www.br-automation.com.

Organization of notices

Safety notices

Contain only information that warns of dangerous functions or situations.

<table>
<thead>
<tr>
<th>Signal word</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danger!</td>
<td>Failure to observe these safety guidelines and notices will result in death, severe injury or substantial damage to property.</td>
</tr>
<tr>
<td>Warning!</td>
<td>Failure to observe these safety guidelines and notices can result in death, severe injury or substantial damage to property.</td>
</tr>
<tr>
<td>Caution!</td>
<td>Failure to observe these safety guidelines and notices can result in minor injury or damage to property.</td>
</tr>
<tr>
<td>Notice!</td>
<td>Failure to observe these safety guidelines and notices can result in damage to property.</td>
</tr>
</tbody>
</table>

Table 1: Organization of safety notices

General notices

Contain useful information for users and instructions for avoiding malfunctions.

<table>
<thead>
<tr>
<th>Signal word</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information:</td>
<td>Useful information, application tips and instructions for avoiding malfunctions.</td>
</tr>
</tbody>
</table>

Table 2: Organization of general notices

1 General information

The modules are equipped with SafeLOGIC functionality that allows them to safely execute applications designed in SafeDESIGNER. The modules can be used in safety applications up to PL e or SIL 3.

The SafeLOGIC controller coordinates the safety-related communication of all modules involved in the application. In this context, the SafeLOGIC controller also monitors the configuration of these modules and autonomously carries out parameter downloads to the modules if necessary. This guarantees a consistent and correct module configuration in the network from a safety point of view in all scenarios involving module replacement and service.

For SafeLOGIC products, these services are executed by the SafeLOGIC controller. For SafeLOGIC-X products, these services are executed on the standard CPU in interaction with Automation Runtime. The safety-related characteristics up to PL e or SIL 3 for applications are provided in both variants, however.

In addition, SafeLOGIC-X products have the same I/O properties as the associated SafeIO products.

- openSAFETY manager for up to 10 / 20 / 100 / 280 SafeNODES
- Flexibly programmable using Automation Studio / SafeDESIGNER
- Innovative management of safe machine options (SafeOPTION)
- Parameter and configuration management
1.1 Function

Safe digital inputs

The module is equipped with safe digital input channels. It can be flexibly used for a wide range of tasks involving the reading of digital signals in safety-related applications up to PL e or SIL 3.

The module is equipped with filters that are individually configurable for switch-on and switch-off behavior. Switch-on filters are used to filter out signal disturbances. Switch-off filters are used to smooth testing gaps in external signal sources – i.e. OSSD signals – so that unintended cutoffs can be avoided.

The input signals of signal pairs (channels 1 and 2, 3 and 4, etc.) are monitored in the module for simultaneity. The maximum permitted discrepancy of inputs of a signal pair is configurable. Here, the signals of dual-channel evaluation directly represent the safe signal of a 2-channel sensor, such as from an E-stop button or safety light curtain.

The module provides pulse signals for diagnosing the sensor line. By default, each pulse signal provides a unique pulse pattern derived from the module's serial number and pulse channel number. This allows any pulse signals to be combined in one signal cable and still cover any cross fault combinations in the cable. The pulse check can also be disabled to connect electronic sensors with separate line monitoring (OSSD signals).

Safe digital outputs

The module is equipped with safe digital output channels. It can be flexibly used for controlling actuators in safety-related applications up to PL e or SIL 3.

The outputs are designed using semiconductor technology so that the safety-related characteristics do not depend on the number of operating cycles. In order to handle all situations involving actuators, there are basically 2 different types of outputs: the high-side - low-side variant (type A) and the high-side - high-side variant (type B). Type A outputs have safety-related advantages since the actuator can be cut off in its connection cable in all error scenarios. Type A outputs are limited to actuators without ground potential (e.g. relays, valves). For actuators with ground potential (e.g. enable inputs on frequency inverters), type B outputs are required. It is important to observe the special notices for the cabling in this case.

Safe digital output channels provide protection against automatic restart when network errors occur. Function blocks needed to fulfill additional requirements regarding protection against automatic restart are available in SafeDESIGNER. The outputs can also be controlled by the standard application. The combination of safety-related control and standard control is arranged such that the execution of a cutoff request always has top priority. For diagnostic purposes, the outputs are designed to be read back.

Depending on the product, the safe digital output channels are equipped with current measurement for detecting open circuits. This function can also be used to monitor muting lamps, for example.

The testing of the semiconductors that is necessary from a safety point of view results in what are known as OSSD low phases in many products. The effect of this is that when an output is active (high state), a switch-off situation (low state) occurs for a very brief amount of time. The test can be cut off if this behavior leads to problems in the application. Observe the associated safety-related notices!

SafeLOGIC function

The module is equipped with SafeLOGIC functionality that allows it to safely execute applications designed in SafeDESIGNER. The module can be used in safety-related applications up to PL e or SIL 3.

In addition, the module coordinates the safety-related communication of all modules involved in the application. In this context, the module also monitors the configuration of these modules and autonomously carries out parameter downloads to the modules if necessary. This guarantees a consistent and correct module configuration in the network from a safety point of view in all scenarios involving module replacement and service. For SafeLOGIC products, these services are executed by the SafeLOGIC controller. For SafeLOGIC-X products, these services are executed on the standard CPU in interaction with Automation Runtime. The safety-related characteristics up to PL e or SIL 3 for applications are provided with both variants, however.
openSAFETY

This module uses the protective mechanisms of openSAFETY when transferring data to the various bus systems. Because the data is encapsulated in the openSAFETY container in a fail-safe manner, the components on the network that are involved in the transfer do not require any additional safety-related features. At this point, only the safety-related characteristic values specified for openSAFETY in the technical data are to be consulted. The data in the openSAFETY container undergoes safety-related processing only when received by the remote station; for this reason, only this component is involved from a safety point of view. Read access to the data in the openSAFETY container for applications without safety-related characteristics is permitted at any point in the network without affecting the safety-related characteristics of openSAFETY.

1.2 Coated modules

Coated modules are X20 modules with a protective coating for the electronics component. This coating protects X20c modules from condensation.

The modules' electronics are fully compatible with the corresponding X20 modules.

Information:

For simplification purposes, only images and module IDs of uncoated modules are used in this data sheet.

The coating has been certified according to the following standards:

- Condensation: BMW GS 95011-4, 2x 1 cycle
- Corrosive gas: EN 60068-2-60, Method 4, exposure 21 days

Contrary to the specifications for X20 system modules without safety certification and despite the tests performed, X20 safety modules are NOT suited for applications with corrosive gases (EN 60068-2-60)!
2 Overview

<table>
<thead>
<tr>
<th>Module</th>
<th>X20SLX402</th>
<th>X20SLX806</th>
<th>X20SLX842</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe digital inputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of inputs</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>24 VDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input filter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td></td>
<td>≤150 µs</td>
<td>Configurable between 0 and 500 ms</td>
</tr>
<tr>
<td>Input circuit</td>
<td></td>
<td></td>
<td>Sink</td>
</tr>
<tr>
<td>Pulse outputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td>Push-Pull</td>
</tr>
<tr>
<td>Switching voltage</td>
<td></td>
<td></td>
<td>I/O power supply minus residual voltage</td>
</tr>
<tr>
<td>Safe digital HS-LS outputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of outputs</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>-</td>
<td>24 VDC</td>
<td></td>
</tr>
<tr>
<td>Nominal output current</td>
<td>-</td>
<td>3 A</td>
<td></td>
</tr>
<tr>
<td>Total nominal current</td>
<td>-</td>
<td>-</td>
<td>10 A</td>
</tr>
<tr>
<td>Output protection</td>
<td>-</td>
<td>-</td>
<td>Thermal short circuit shutdown, integrated protection for switching inductive loads</td>
</tr>
<tr>
<td>Safe digital HS-HS outputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of outputs</td>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>24 VDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal output current</td>
<td>0.2 A</td>
<td>1.2 A</td>
<td>50 mA</td>
</tr>
<tr>
<td>Total nominal current</td>
<td>0.4 A</td>
<td>1.2 A</td>
<td>100 mA</td>
</tr>
<tr>
<td>Output protection</td>
<td>Active shutdown in the event of overcurrent or short circuit, integrated protection for switching inductive loads</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) The module's total nominal current is limited to 10 A. The output currents of group "Safe digital HS-HS outputs" must be included.

Table 3: Digital mixed modules
3 Order data

<table>
<thead>
<tr>
<th>Model number</th>
<th>Short description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X20SLX402</td>
<td>X20 safe digital mixed module, safety controller, openSAFETY, 11 openSAFETY nodes, 4 SafeMOTION axes, 4 safe digital inputs, configurable input filter, 4 pulse outputs, 24 VDC, 2 safe type B2 digital outputs, 24 VDC, 0.2 A, OSSD <10 µs</td>
</tr>
<tr>
<td>X20cSLX402</td>
<td>X20 safe digital mixed module, coated, safety controller, openSAFETY, 11 openSAFETY nodes, 4 SafeMOTION axes, 4 safe digital inputs, configurable input filter, 4 pulse outputs, 24 VDC, 2 safe type B2 digital outputs, 24 VDC, 0.2 A, OSSD <10 µs</td>
</tr>
<tr>
<td>X20SLX806</td>
<td>X20 safe digital mixed module, safety controller, openSAFETY, 11 openSAFETY nodes, 4 SafeMOTION axes, 8 safe digital inputs, configurable input filter, 4 pulse outputs, 24 VDC, 6 safe type B2 digital outputs, 24 VDC, 0.2 A, OSSD <10 µs</td>
</tr>
<tr>
<td>X20SLX842</td>
<td>X20 safe digital mixed module, safety controller, openSAFETY, 11 openSAFETY nodes, 4 SafeMOTION axes, 8 safe digital inputs, configurable input filter, 4 pulse outputs, 24 VDC, 4 safe type A digital outputs, 24 VDC, 3 A, OSSD <500 µs, 2 safe type B2 digital outputs, 24 VDC, 50 mA, OSSD <500 µs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required accessories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus modules</td>
</tr>
<tr>
<td>X20BM33</td>
</tr>
<tr>
<td>X20BM36</td>
</tr>
<tr>
<td>X20cBM33</td>
</tr>
<tr>
<td>Terminal blocks</td>
</tr>
<tr>
<td>X20TB52</td>
</tr>
</tbody>
</table>

Table 4: X20SLX402, X20cSLX402, X20SLX806, X20SLX842 - Order data
4 Technical data

<table>
<thead>
<tr>
<th>Model number</th>
<th>X20SLX402</th>
<th>X20cSLX402</th>
<th>X20SLX806</th>
<th>X20SLX842</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O module</td>
<td>4 safe digital inputs, 4 pulse outputs, 24 VDC, 2 safe type B2 digital outputs, 24 VDC, 0.2 A, OSSD <10 µs, SafeLOGIC-X technology</td>
<td>8 safe digital inputs, 4 pulse outputs, 24 VDC, 6 safe type B2 digital outputs, 24 VDC, 0.2 A, OSSD <10 µs, SafeLOGIC-X technology</td>
<td>8 safe digital inputs, 4 pulse outputs, 24 VDC, 4 safe type A digital outputs, 24 VDC, 3 A, OSSD <500 µs, 2 safe type B2 digital outputs, 24 VDC, 50 mA, OSSD <500 µs, SafeLOGIC-X technology</td>
<td></td>
</tr>
<tr>
<td>Short description</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General information

<table>
<thead>
<tr>
<th>B&R ID code</th>
<th>0xE7EA</th>
<th>0xF210</th>
<th>0xE758</th>
<th>0xE7EB</th>
</tr>
</thead>
<tbody>
<tr>
<td>System requirements</td>
<td>Automation Studio</td>
<td>4.2 or later</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Automation Runtime</td>
<td>B4.25 or later</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Safety Release</td>
<td>4.2.1 or later</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status indicators</td>
<td>I/O function per channel, operating state, module status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostics</td>
<td>Module run/error</td>
<td>Yes, using status LED and software</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outputs</td>
<td>Yes, using status LED and software</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inputs</td>
<td>Yes, using status LED and software</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scope</td>
<td>Module</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>Programmable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standalone mode</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. I/O cycle time</td>
<td>1 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bus</td>
<td>0.4 W</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internal I/O</td>
<td>2.5 W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical isolation</td>
<td>Channel - Bus</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Channel - Channel</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Certifications</td>
<td>CE</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EAC</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UL</td>
<td>cULus E115267</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATEX</td>
<td>Zone 2, II 3G Ex nA nC IIA T5 Gc IP20, Ta (see X20 user's manual) FTZÚ 09 ATEX 0083X</td>
<td>In preparation</td>
<td>Zone 2, II 3G Ex nA nC IIA T5 Gc IP20, Ta (see X20 user's manual) FTZÚ 09 ATEX 0083X</td>
</tr>
<tr>
<td></td>
<td>DNV GL</td>
<td>In preparation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 61508:2010, SIL 3</td>
<td>EN 62061:2013, SIL 3</td>
<td>EN ISO 13849-1:2015, Cat. 4 / PL e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN 62061:2013, SIL 3</td>
<td>IEC 61511:2004, SIL 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety characteristics</td>
<td>EN 50156-1:2004</td>
<td>EN 50156-1 in preparation</td>
<td>EN 50156-1:2004</td>
<td></td>
</tr>
<tr>
<td>MTTFD</td>
<td>2500 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mission time</td>
<td>Max. 20 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFH / PFHₚ</td>
<td><1*10⁻¹⁰</td>
<td>Negligible</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>openSAFETY wired</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>openSAFETY wireless</td>
<td><1*10⁻¹⁴ * Number of openSAFETY packets per hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proof test interval (PT)</td>
<td><2*10⁻²</td>
<td></td>
<td></td>
<td>20 years</td>
</tr>
</tbody>
</table>

Table 5: X20SLX402, X20cSLX402, X20SLX806, X20SLX842 - Technical data
Table 5: X20SLX402, X20cSLX402, X20SLX806, X20SLX842 - Technical data

<table>
<thead>
<tr>
<th>Model number</th>
<th>X20SLX402</th>
<th>X20cSLX402</th>
<th>X20SLX806</th>
<th>X20SLX842</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe digital inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN ISO 13849-1:2015</td>
<td>Cat. 3 when using individual input channels, Cat. 4 when using input channel pairs (e.g. SI1 and SI2) or more than 2 input channels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>PL e</td>
<td>DC</td>
<td>PL e</td>
<td>DC</td>
</tr>
<tr>
<td></td>
<td>>94%</td>
<td>>94%</td>
<td>>94%</td>
<td>>94%</td>
</tr>
<tr>
<td>SIL CL</td>
<td>SIL 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFF</td>
<td>>90%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safe digital outputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN ISO 13849-1:2015</td>
<td>Cat. 3 if parameter "Disable OSSD = Yes-ATTENTION", Cat. 4 if parameter "Disable OSSD = No"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>PL d if parameter "Disable OSSD = Yes-ATTENTION", PL e if parameter "Disable OSSD = No"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>60% if parameter "Disable OSSD = Yes-ATTENTION", >94% if parameter "Disable OSSD = No"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIL CL</td>
<td>SIL 2 if parameter "Disable OSSD = Yes-ATTENTION", SIL 3 if parameter "Disable OSSD = No"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFF</td>
<td>>60% if parameter "Disable OSSD = Yes-ATTENTION", >90% if parameter "Disable OSSD = No"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functionality</td>
<td>Communication with each other</td>
<td>Communication only possible with SafeLOGIC controller X20(c)SL81xx</td>
<td>Max. 1 active SafeLOGIC-X controller per standard X20(c)CPxxxx CPU</td>
<td></td>
</tr>
<tr>
<td>Support for machine options</td>
<td>BOOL 64</td>
<td>INT -</td>
<td>UINT -</td>
<td>DINT -</td>
</tr>
<tr>
<td></td>
<td>UDINT -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SafeMOTION support</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. number of SafeMOTION axes</td>
<td>4, depends on the data width of the modules used</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timing precision</td>
<td>Time * 0.05 + Cycle time of the safety application</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. number of openSAFETY nodes</td>
<td>10, depends on the data width of the modules used</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data exchange between CPU and SL</td>
<td>Max. total data width for each direction 8 bytes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. number of data points for each direction</td>
<td>BOOL 64</td>
<td>INT 4</td>
<td>UINT 4</td>
<td>DINT 2</td>
</tr>
<tr>
<td></td>
<td>UDINT 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data exchange between SL and SL</td>
<td>Max. total number of data points for each direction</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. number of data points for each direction</td>
<td>BOOL 16</td>
<td>INT 2</td>
<td>UINT 2</td>
<td>DINT 2</td>
</tr>
<tr>
<td></td>
<td>UDINT 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limit values for SafeDESIGNER application</td>
<td>Max. resources available for SafeDESIGNER info window entries</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FB instances	256
Marker memory	5120 bytes (0x1400)
Stack memory	2048 bytes
Memory for safe input data	128 bytes, 68 bytes of which are usable for modules
Memory for safe output data	64 bytes
Memory for standard input data	64 bytes
Memory for standard output data	64 bytes
Marker count	256

Data sheet V1.141 X20(c)SLXxxx Translation of the original documentation
<table>
<thead>
<tr>
<th>Model number</th>
<th>X20SLX402</th>
<th>X20cSLX402</th>
<th>X20SLX806</th>
<th>X20SLX842</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional SafeDESIGNER limit values</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. number of function block types</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. number of force variables</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. number of variable with variable status</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/O power supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>24 VDC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage range</td>
<td>24 VDC -15% / +20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated protection</td>
<td>Reverse polarity protection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safe digital inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>24 VDC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input characteristics per EN 61131-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware</td>
<td>≤150 µs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td>Configurable between 0 and 500 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input circuit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input voltage</td>
<td>24 VDC -15% / +20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input current at 24 VDC</td>
<td>Max. 3.28 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input resistance</td>
<td>Min. 7.33 kΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error detection time</td>
<td>100 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation voltage between channel and bus</td>
<td>500 Veff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching threshold</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>≤5 VDC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>>15 VDC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line length between pulse output and input</td>
<td>Max. 60 m with unshielded line</td>
<td></td>
<td>Max. 400 m with shielded line</td>
<td></td>
</tr>
<tr>
<td>Safe digital HS-LS outputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variant</td>
<td>-</td>
<td>FET, 1x positive switching, 1x negative switching, type A, output level readable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>-</td>
<td>24 VDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal output current</td>
<td>-</td>
<td>3 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total nominal current</td>
<td>-</td>
<td>10 A 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output protection</td>
<td>-</td>
<td>Thermal short-circuit shutdown, integrated protection for switching inductive loads 6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Braking voltage when switching off inductive loads</td>
<td>-</td>
<td>Max. 90 VDC 7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error detection</td>
<td>-</td>
<td>1 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation voltage between channel and bus</td>
<td>-</td>
<td>500 Veff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak short-circuit current</td>
<td>-</td>
<td>Max. 100 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leakage current when switched off</td>
<td>-</td>
<td>≤1 VDC at nominal current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual voltage</td>
<td>-</td>
<td>≤1 VDC at nominal current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching voltage</td>
<td>-</td>
<td>I/O power supply minus residual voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. switching frequency</td>
<td>-</td>
<td>1000 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test pulse length</td>
<td>-</td>
<td>Max. 500 µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. capacitive load</td>
<td>-</td>
<td>100 nF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safe digital HS-HS outputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variant</td>
<td>FET, 2x positive switching, type B2, output level readable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>24 VDC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal output current</td>
<td>0.2 A</td>
<td>50 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total nominal current</td>
<td>0.4 A</td>
<td>1.2 A</td>
<td>100 mA</td>
<td></td>
</tr>
<tr>
<td>Output protection</td>
<td>Active shutdown in the event of overcurrent or short circuit, integrated protection for switching inductive loads 4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Braking voltage when switching off inductive loads</td>
<td>Max. 45 VDC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error detection time</td>
<td>1 s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation voltage between channel and bus</td>
<td>500 Veff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak short-circuit current</td>
<td>Max. 10 A</td>
<td>500 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leakage current when switched off</td>
<td><100 µA</td>
<td><1 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual voltage</td>
<td>≤1.2 VDC at nominal current</td>
<td>≤3 VDC at nominal current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching voltage</td>
<td>I/O power supply minus residual voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. switching frequency</td>
<td>100 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test pulse length</td>
<td>Max. 10 µs</td>
<td>Max. 500 µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. capacitive load</td>
<td>100 nF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current on loss of ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOUT</td>
<td><100 µA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGD</td>
<td><200 mA</td>
<td><50 mA 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse outputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variant</td>
<td>Push-Pull</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: X20SLX402, X20cSLX402, X20SLX806, X20SLX842 - Technical data
Technical Data

<table>
<thead>
<tr>
<th>Model number</th>
<th>X20SLX402</th>
<th>X20cSLX402</th>
<th>X20SLX806</th>
<th>X20SLX842</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal output current</td>
<td>50 mA</td>
<td></td>
<td></td>
<td>200 mA</td>
</tr>
<tr>
<td>Output protection</td>
<td>Shutdown of individual channels in the event of overload or short circuit (^6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak short-circuit current</td>
<td>0.5 A for 120 µs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-circuit current</td>
<td>15 mA (^{\text{eff}})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leakage current when switched off</td>
<td>0.1 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual voltage</td>
<td>≤4 VDC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching voltage</td>
<td>I/O power supply minus residual voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total nominal current</td>
<td>200 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operating Conditions

<table>
<thead>
<tr>
<th></th>
<th>X20SLX402</th>
<th>X20cSLX402</th>
<th>X20SLX806</th>
<th>X20SLX842</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting orientation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation elevation above sea level</td>
<td>0 to 2000 m, no limitation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degree of protection per EN 60529</td>
<td>IP20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ambient Conditions

<table>
<thead>
<tr>
<th></th>
<th>X20SLX402</th>
<th>X20cSLX402</th>
<th>X20SLX806</th>
<th>X20SLX842</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal mounting orientation</td>
<td>0 to 60°C</td>
<td>-40 to 60°C</td>
<td>0 to 60°C</td>
<td></td>
</tr>
<tr>
<td>Vertical mounting orientation</td>
<td>0 to 50°C</td>
<td>-40 to 50°C</td>
<td>0 to 50°C</td>
<td></td>
</tr>
<tr>
<td>Derating</td>
<td>See section "Derating"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>-40 to 85°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td>-40 to 85°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative humidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td>5 to 95%, non-condensing</td>
<td>Up to 100%, condensing</td>
<td>5 to 95%, non-condensing</td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>5 to 95%, non-condensing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td>5 to 95%, non-condensing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mechanical Properties

<table>
<thead>
<tr>
<th></th>
<th>Order 2x safety-keyed terminal block separately.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>Order 1x safety-keyed bus module separately.</td>
</tr>
</tbody>
</table>

Spacing

25\(^{\text{mm}}\)

1) The related danger warnings in the technical data sheet must also be observed.
2) If there are multiple SafeLOGIC-X controllers in the Automation Studio hardware tree, all but 1 must be disabled.
3) Keep in mind that 8 BOOL count as 1 data point.
4) For a parameter description, see section "Message window" of the SafeDESIGNER documentation.
5) The module’s total nominal current is limited to 10 A. The output currents of group "Safe digital HS-HS outputs" must be included.
6) The protective function is provided for max. 30 minutes for a continuous short circuit.
7) Due to the internal protective circuit, this braking voltage only takes effect starting at a load of typ. 250 mA.
8) The value for this module is limited to 50 mA by the nominal output current of the HS-HS outputs.

Danger!

Operation outside the technical data is not permitted and can result in dangerous states.

Information:

For detailed information about installation, see chapter "Installation notes for X20 modules" on page 82.
Derating

The derating curve refers to standard operation and can be shifted to the right by the specified derating bonus if in a horizontal mounting orientation.

<table>
<thead>
<tr>
<th>Module</th>
<th>X20SLX402</th>
<th>X20SLX806</th>
<th>X20SLX842</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derating bonus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At 24 VDC</td>
<td>+0°C</td>
<td>+0°C</td>
<td>+0°C</td>
</tr>
<tr>
<td>Dummy module on the left</td>
<td>+0°C</td>
<td>+0°C</td>
<td>+0°C</td>
</tr>
<tr>
<td>Dummy module on the right</td>
<td>+0°C</td>
<td>+0°C</td>
<td>+0°C</td>
</tr>
<tr>
<td>Dummy module on the left and right</td>
<td>+0°C</td>
<td>+0°C</td>
<td>+0°C</td>
</tr>
<tr>
<td>With double PFH / PFH₂</td>
<td>+0°C</td>
<td>+0°C</td>
<td>+0°C</td>
</tr>
</tbody>
</table>

Table 6: Derating bonus

Inputs

The number of inputs that should be used at the same time depends on the operating temperature and the mounting orientation. The resulting amount can be looked up in the following table.

<table>
<thead>
<tr>
<th>Horizontal (0 to 60°C, coated: -40 to 60°C)</th>
<th>Vertical (0 to 50°C, coated: -40 to 50°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X20SLX402</td>
<td></td>
</tr>
<tr>
<td>X20SLX806</td>
<td></td>
</tr>
<tr>
<td>X20SLX842</td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Derating in relation to operating temperature and mounting orientation
Outputs

The maximum total nominal current depends on the operating temperature and the mounting orientation. The resulting total nominal current can be found in the following table.

<table>
<thead>
<tr>
<th>Horizontal (0 to 60°C, coated: -40 to 60°C)</th>
<th>Vertical (0 to 50°C, coated: -40 to 50°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X20SLX402</td>
<td>X20SLX806</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SLX842</td>
<td>X20SLX842</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8: Derating in relation to operating temperature and mounting orientation

Information:

Regardless of the values specified in the derating curve, the module cannot be operated above the values specified in the technical data.
5 LED status indicators

<table>
<thead>
<tr>
<th>Figure</th>
<th>LED</th>
<th>Color</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>Green</td>
<td>Off</td>
<td>No power to module</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single flash</td>
<td>Reset mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double flash</td>
<td>Updating firmware</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blinking</td>
<td>PREOPERATIONAL mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>On</td>
<td>RUN mode</td>
</tr>
<tr>
<td>e</td>
<td>Red</td>
<td>Off</td>
<td>No power to module or everything OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pulsating</td>
<td>Boot loader mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Triple flash</td>
<td>Updating safety-related firmware</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>On</td>
<td>Error or I/O component not provided with voltage</td>
</tr>
<tr>
<td>e + r</td>
<td>Solid red / Single green flash</td>
<td>Blinking</td>
<td>Error in dual-channel evaluation (synchronous blinking of 2 affected channels)</td>
<td></td>
</tr>
</tbody>
</table>

Table 9: Status display

Danger!

Constantly lit "SE" LEDs indicate a defective module that must be replaced immediately. It is your responsibility to ensure that all necessary repair measures are initiated after an error occurs since subsequent errors can result in a hazard!
6 Pinouts

Figure 1: X20SLX402 - Pinout

Figure 2: X20SLX806 - Pinout

Figure 3: X20SLX842 - Pinout
7 Connection examples

The typical connection examples in this section only represent a selection of the different wiring methods. The user must take error detection into account in each case.

Information:
For details about connection examples (such as circuit examples, compatibility class, max. number of supported channels, terminal assignments, etc.), see chapter Connection examples of the "Integrated safety technology" user's manual (MASAFETY-ENG).

7.1 Module behavior when GND connection is lost

In this section and all of its subsections, the term "connection element" is to be understood as follows for the respective system (X20, X67):
- X20: e.g. terminal block
- X67: e.g. M12, M8

A loss of GND on the module may cause current to flow from the module via the output or the GND connection of the connection element.

If power supplies, actuators or GND connections are grounded, the user must ensure that no grounding wires or any associated potential short circuits or open circuits will cause any additional impermissible GND connections.

The two currents I_{OUT} and I_{GND} are module-specific and must be taken from the technical data.

![Figure 4: Module behavior when GND connection is lost](image)

Danger!
The user is responsible for preventing any safety problems that could occur as a result of the I_{OUT} and I_{GND} currents specified in the technical data and the selected method of installation.
7.1.1 GND feedback to connection element, no external GND

If the module is used in the following wiring mode, then a loss of GND will not cause any problems because current is not able to flow via I_{OUT} or I_{GND}.

![Figure 5: GND feedback to connection element](image)

Danger!

Other wiring methods

If another wiring method is used, the user must ensure that a safety-critical state cannot occur if there are 2 external faults (open circuit, etc.). In addition, the current specifications for I_{OUT} and I_{GND} must be taken into consideration in the event that the GND connection is lost.
7.1.2 Using external GND without GND from connection element

Fault sequence:

- Fault ① (defective protective component):
 A component connected to GND on the output short circuits or behaves like an ohmic resistor. This fault is not always detected.

- Fault ② (open circuit on module GND):
 The module loses its direct connection to GND and current begins to flow through the defective protective component → I\text{_OUT} → actuator.

 As a result, current above the maximum value permitted by the module is supplied to the actuator.

Danger!

This type of installation can cause hazardous situations and is therefore NOT permitted.
7.1.3 Using external GND and GND from connection element

![Diagram of possible connection error](image)

Figure 7: Possible connection error

Fault sequence:

- Fault ① (open circuit on module GND):
 No error is detected and the module continues to operate normally due to the additional external GND connection.
- Fault ② (open circuit on actuator's protective circuit):
 The module loses its direct connection to GND and current begins to flow through $I_{GND} \rightarrow$ damping diode → actuator.
 As a result, current above the maximum value permitted by the module is supplied to the actuator.

Danger!

This type of installation can cause hazardous situations and is therefore NOT permitted.

Possible remedies

This wiring method could be made possible, for example, by using two wires to complete the connection that experienced the open circuit fault in ② → see connection Ⓐ.

Information:

The diode in the actuator shown in the "Possible connection error" image is intended only to illustrate the error and is not mandatory.
7.2 Connecting single-channel sensors with contacts

Figure 8: Connecting single-channel sensors with contacts

Single-channel sensors with contacts are the simplest connection.

With this connection, the module satisfies Category 3 requirements in accordance with EN ISO 13849-1:2015. Be aware that this statement applies only to the module and not to the wiring shown. You are responsible for wiring the sensor according to the required category.

7.3 Connecting two-channel sensors with contacts

Figure 9: Connecting two-channel sensors with contacts

Sensors with contacts can be connected directly to a safe digital input module via two channels. Dual-channel evaluation is handled directly by the module.

With this connection, the module satisfies Category 4 requirements in accordance with EN ISO 13849-1:2015. Be aware that this statement applies only to the module and not to the wiring shown. You are responsible for wiring the sensor according to the required category.
7.4 Connecting multi-channel sensors with contacts

Multi-channel switches (mode selector switches, switching devices with "shift key" capability) can be connected to multiple safe digital input modules.

If signals are evaluated internally in the module (see image to the left), the same pulse must be configured for all of the inputs being used. If signals are evaluated across all modules (see image to the right), all of the inputs must be configured to use an external pulse. In this type of application, pulse evaluation with the "default" pulse is not suitable; therefore, a separate pulse signal with approx. 4 ms low-phase is available.

In this case, multi-channel evaluation must be handled in the safety application (PLCopen function block "SF_ModeSelector"). The category achieved per EN ISO 13849-1:2015 in this way depends on the error models of the switching element (e.g. mode selector switch) and must be examined in combination with the error detection present in the PLCopen function block.

7.5 Connecting electronic sensors

Electronic sensors (light curtains, laser scanners, inductive sensors, etc.) can be connected directly to safe digital input modules. The switching thresholds of the input channels must be taken into account for these types of applications.

With single-channel wiring (see image on the left), the module satisfies Category 3 requirements in accordance with EN ISO 13849-1:2015. With two-channel wiring (see image on the right), the module satisfies Category 4 requirements in accordance with EN ISO 13849-1:2015. Be aware that this statement applies only to the module and not the wiring or connected electronic sensor. You are responsible for wiring the sensor in accordance with the required category and within the specifications set forth by the manufacturer of the electronic sensor.
7.6 Using the same pulse signals

![Diagram](image)

When using the same pulse signals for different inputs, they must be isolated from one another. Otherwise, damage to the cables may cause errors that are not detected by the module.

Danger!

If the same pulse signals are routed in the same cable, damage to the cable can cause cross faults between the signals to occur that are not detected by the module. This can result in dangerous situations.

For this reason, signal lines with the same pulse signal should be routed in different cables, or you should implement other error prevention measures in accordance with EN ISO 13849-2:2012.

Danger!

It is especially important to check the wiring when using the same pulse signal for two inputs that are located next to each other on the terminal. Pay special attention to ensure that poor wiring has not resulted in the two inputs being connected together.
7.7 Connecting safety-oriented actuators for Type A outputs

Safety actuators (contactors, motors, muting lamps, valves) that are compatible with module performance data can be connected directly.

With this connection, the module satisfies Category 4 requirements in accordance with EN ISO 13849-1:2015. Be aware that this statement applies only to the module and not to the wiring shown. You are responsible for wiring the actuator in accordance with the required category and the characteristics of actuator.

7.8 Connecting safety-oriented actuators for Type B outputs

Safety actuators (contactors, motors, muting lamps, valves) that are compatible with module performance data can be connected directly.

With this connection, the module satisfies Category 4 requirements in accordance with EN ISO 13849-1:2015. Be aware that this statement applies only to the module and not to the wiring shown. You are responsible for wiring the actuator in accordance with the required category and the characteristics of actuator.

If the actuators contain an inverse diode or electronic components, then the special instructions in section "Module behavior when GND connection is lost" must be followed.
8 Error detection

8.1 Internal module errors

The red "SE" LED makes it possible to evaluate the following error states:

- Module error, e.g. defective RAM, defective CPU, etc.
- Overtemperature/Undertemperature
- Overvoltage/Undervoltage
- Incompatible firmware version

Errors that occur within the module are detected according to the requirements of the standards listed in the certificate and within the minimum safety response time specified in the technical data. After this occurs, the module enters a safe state.

The internal module tests needed for this are only performed, however, if the module's firmware has been booted and the module is in either the PREOPERATIONAL state or the OPERATIONAL state. If this state is not achieved (for example, because the module has not been configured in the application), then the module will remain in the boot state.

BOOT mode on a module is clearly indicated by a slowly blinking SE LED (2 Hz or 1 Hz).

The error detection time specified in the technical data is relevant only for detecting external errors (i.e. wiring errors) in single-channel structures.

Danger!

Operating the safety module in BOOT mode is not permitted.

Danger!

A safety-related output channel is only permitted to be switched off for a maximum of 24 hours. The channel must be switched on by the end of this period so that the module's internal channel test can be performed.
8.2 Wiring errors

The wiring errors described in section "Error detection" are indicated by the red channel LED according to the application.

If a module detects an error, then:

- The channel LED is lit constantly red.
- Status signal (e.g. (Safe)ChannelOK, (Safe)InputOK, (Safe)OutputOK, etc.) is set to (SAFE)FALSE.
- Signal "SafeDigitalInputxx" or "SafeDigitalOutputxx" is set to SAFEFALSE.
- An entry is generated in the logbook.

Danger!

Recognizable errors (see the following chapters) are detected by the module within the error detection time. Errors not recognized by the module (or not recognized on time) that can lead to safety-critical states must be detected using additional measures.

Danger!

It is your responsibility to ensure that all necessary repair measures are initiated after an error occurs since subsequent errors can result in a hazard!

8.2.1 Type A output channels

Danger!

Type A output channels also cut off the load on the GND side. Check whether the actuator you have connected permits a cutoff on the GND side. X20 and X67 systems do not support this type of cutoff, for example.

Danger!

Note that wiring SOx+ directly to GND via an actuator is not permitted; wiring 24 VDC directly to SOx- via an actuator is also not permitted.

These types of errors will not be detected by the module. The user must prevent these types of errors through careful wiring.
8.2.2 Type B output channels

Danger!

As illustrated in the following circuit examples, the connected actuators can be connected to GND on the load side. Connecting actuators on just one side without a GND supply is not permitted, however. This would cause a series connection of the actuators in the event of an open circuit, which could then cause a hazardous module error.

![Figure 16: Invalid wiring](image)

8.2.3 Connecting single-channel sensors with contacts

By default, every input channel is assigned a dedicated pulse output. This pulse output issues a specific signal that helps detect wiring problems, such as a short circuit to 24 VDC, GND or other signal channels. The status of the connected switches is indicated by channel-specific LEDs. The LEDs "OO" and "OC" have no significance with this type of connection.

With this type of connection in combination with the configuration "Pulse Mode = Internal", the modules can detect the following errors:

<table>
<thead>
<tr>
<th>Error</th>
<th>Error on contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground fault on the pulse output</td>
<td>Detected</td>
</tr>
<tr>
<td>Pulse output shorted to 24 VDC</td>
<td>Detected</td>
</tr>
<tr>
<td>Cross fault between the pulse output and the other pulse signal</td>
<td>Detected</td>
</tr>
<tr>
<td>Ground fault on signal input</td>
<td>Not detected</td>
</tr>
<tr>
<td>Signal input shorted to 24 VDC</td>
<td>Detected</td>
</tr>
<tr>
<td>Cross fault between the signal input and the other pulse signal</td>
<td>Detected</td>
</tr>
<tr>
<td>Cross fault between the pulse output and the signal input</td>
<td>Not detected</td>
</tr>
<tr>
<td>Open circuit</td>
<td>Not detected</td>
</tr>
</tbody>
</table>

Table 10: SI error detection when "Pulse mode = Internal"
8.2.4 Connecting two-channel sensors with contacts

By default, every input channel is assigned a dedicated pulse output. This pulse output issues a specific signal that helps detect wiring problems, such as a short circuit to 24 VDC, GND or other signal channels.

The status of the connected switches is signaled via channel-specific LEDs, and the status of the dual-channel evaluation is signaled via the "OO" (for combinations with N.C./N.C. contacts) or "OC" LED (for combinations with N.C./N.O. contacts). On module types that do not have these LEDs, errors detected in the dual-channel evaluation are indicated by the respective channel LED blinking red.

With this type of connection in combination with the configuration "Pulse Mode = Internal" and combined with dual-channel evaluation in the module or in SafeDESIGNER, the modules can detect the following errors:

<table>
<thead>
<tr>
<th>Error</th>
<th>Open</th>
<th>Error on contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground fault on the pulse output</td>
<td>Detected</td>
<td>Detected</td>
</tr>
<tr>
<td>Pulse output shorted to 24 VDC</td>
<td>Detected</td>
<td>Detected</td>
</tr>
<tr>
<td>Cross fault between the pulse output and the other pulse signal</td>
<td>Detected</td>
<td>Detected</td>
</tr>
<tr>
<td>Ground fault on signal input</td>
<td>Not detected</td>
<td>Detected</td>
</tr>
<tr>
<td>Signal input shorted to 24 VDC</td>
<td>Detected</td>
<td>Detected</td>
</tr>
<tr>
<td>Cross fault between the signal input and the other pulse signal</td>
<td>Detected</td>
<td>Detected</td>
</tr>
<tr>
<td>Cross fault between the pulse output and the signal input</td>
<td>Detected</td>
<td>Not detected</td>
</tr>
<tr>
<td>Open circuit</td>
<td>Not detected</td>
<td>Detected</td>
</tr>
</tbody>
</table>

Table 11: SI error detection with "Pulse Mode = Internal" combined with dual-channel evaluation in the module or in SafeDESIGNER

1) Dual-channel evaluation of the module.

8.2.5 Connecting multi-channel sensors with contacts

The status of the connected switches is indicated by channel-specific LEDs. The LEDs "OO" and "OC" have no significance with this type of connection.

With this wiring, the following errors can be detected:

<table>
<thead>
<tr>
<th>Error</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground fault on the pulse output</td>
<td>Detected</td>
</tr>
<tr>
<td>Pulse output shorted to 24 VDC</td>
<td>Detected</td>
</tr>
<tr>
<td>Cross fault between the pulse output and the other pulse signal</td>
<td>Detected</td>
</tr>
<tr>
<td>Ground fault on signal input (active signal)</td>
<td>Detected</td>
</tr>
<tr>
<td>Ground fault on signal input (inactive signal)</td>
<td>Not detected</td>
</tr>
<tr>
<td>Signal input shorted to 24 VDC</td>
<td>Detected</td>
</tr>
<tr>
<td>Cross fault between the signal input and the other pulse signal</td>
<td>Detected</td>
</tr>
<tr>
<td>Cross fault between the pulse output and the signal input (active signal)</td>
<td>Not detected</td>
</tr>
<tr>
<td>Open circuit (active signal)</td>
<td>Detected</td>
</tr>
<tr>
<td>Cross fault between the pulse output and the signal input (inactive signal)</td>
<td>Detected</td>
</tr>
<tr>
<td>Open circuit (inactive signal)</td>
<td>Not detected</td>
</tr>
</tbody>
</table>

Table 12: SI error detection when "Pulse Mode = External"

1) Detected by PLCopen function block "SF_ModeSelector" in the application.

Danger!

If "Pulse Mode = External" is used in the channel configuration, then an additional TOFF filter with 5 ms is enabled in the module. The corresponding information regarding the TOFF filter must also be considered when using the "Pulse Mode = External" setting.

Information:

With the configuration "Pulse Mode = Internal", the pulses have a low phase of approximately 300 µs. This low phase is designed such that no additional degradation of the total response time can occur in the system. If line lengths exceed the max. line length (see technical data), problems may occur with this configuration. In these cases, configuration "Pulse Mode = External" can also be useful for normal sensors with contacts. The reduced error detection and extension of the total response time must be taken into account, however.
8.2.6 Connecting electronic sensors

A pulse pattern cannot be used with electronic sensors. The input channels must therefore be configured to "Pulse Mode = No Pulse".

Any gaps when testing the connected OSSD outputs must be masked out with the module’s cutoff filter in order to avoid an unintended shutdown.

Danger!

With the configuration "Pulse Mode = No Pulse", the module itself is not able to detect wiring errors. Internal errors are still detected, however. All errors resulting from incorrect or faulty wiring must be handled through supplementary measures per EN ISO 13849-2:2012 or by the connected device.

Danger!

Configuring a switch-off filter lengthens the safety response time. The configured filter value must be added to the total response time.

8.2.7 Safety actuator connection

<table>
<thead>
<tr>
<th>Error / module</th>
<th>Disable OSSD = No</th>
<th>Disable OSSD = Yes</th>
<th>ATTENTION</th>
<th>Error on output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Switched off</td>
<td>Switched on</td>
<td>Switched off</td>
<td>Switched on</td>
</tr>
<tr>
<td>Ground fault on SOx+ (output type A) or SOx (output type B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All SO types</td>
<td>Not detected</td>
<td>Detected</td>
<td>Not detected</td>
<td>Detected</td>
</tr>
<tr>
<td>X20SC0xxx</td>
<td>Not detected</td>
<td>Detected</td>
<td>Not detected</td>
<td>Not detected</td>
</tr>
<tr>
<td>X20SLLxxx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SRTxxx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SOx1x0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground fault on SOx- (output type A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SC0xxx</td>
<td>Detected</td>
<td>Detected</td>
<td></td>
<td>Not detected</td>
</tr>
<tr>
<td>X20SLLxxx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SRTxxx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SOx1x0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOx+ shorted to 24 VDC (output type A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SC0xxx</td>
<td>Detected</td>
<td>Detected</td>
<td></td>
<td>Detected</td>
</tr>
<tr>
<td>X20SLLxxx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SRTxxx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SOx1x0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOx shorted to 24 VDC (output type B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SC0xxx</td>
<td>Detected (1)</td>
<td>Not detected</td>
<td>Detected (2)</td>
<td>Not detected</td>
</tr>
<tr>
<td>X20SLLxxx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SRTxxx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SOx1x0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GND shorted to 24 VDC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SC0xxx</td>
<td>Not detected</td>
<td>Not detected</td>
<td>Not detected</td>
<td>Not detected</td>
</tr>
<tr>
<td>X20SLLxxx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SRTxxx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SOx1x0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross fault between SOx+ (output type A) and the other signal (high)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SC0xxx</td>
<td>Detected</td>
<td>Detected</td>
<td>Detected</td>
<td>Not detected</td>
</tr>
<tr>
<td>X20SLLxxx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SRTxxx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SOx1x0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross fault between SOx (output type B) and the other signal (high)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SC0xxx</td>
<td>Detected (1)</td>
<td>Not detected</td>
<td>Detected (2)</td>
<td>Not detected</td>
</tr>
<tr>
<td>X20SLLxxx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SRTxxx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SOx1x0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SC2212</td>
<td>Detected (1)</td>
<td>Detected (1)</td>
<td>Detected (1)</td>
<td>Not detected</td>
</tr>
<tr>
<td>X67SC4122.L12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 13: SO error detection
Table 13: SO error detection

<table>
<thead>
<tr>
<th>Error / module</th>
<th>Disable OSSD = No</th>
<th>Disable OSSD = Yes-ATTENTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Switched off</td>
<td>Switched on</td>
</tr>
<tr>
<td>X20SC0xxx</td>
<td>Detected</td>
<td>Detected</td>
</tr>
<tr>
<td>X20SLxxx</td>
<td>Detected</td>
<td>Detected</td>
</tr>
<tr>
<td>X20SRTxxx</td>
<td>Detected</td>
<td>Detected</td>
</tr>
<tr>
<td>X20SOx1x0</td>
<td>Detected</td>
<td>Detected</td>
</tr>
</tbody>
</table>

Cross fault between GND and the other signal (high)

<table>
<thead>
<tr>
<th>Error / module</th>
<th>Disable OSSD = No</th>
<th>Disable OSSD = Yes-ATTENTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SC0xxx</td>
<td>Not detected</td>
<td>Not detected</td>
</tr>
<tr>
<td>X20SLxxx</td>
<td>Not detected</td>
<td>Not detected</td>
</tr>
<tr>
<td>X20SRTxxx</td>
<td>Not detected</td>
<td>Not detected</td>
</tr>
<tr>
<td>X20SO6300</td>
<td>Not detected</td>
<td>Not detected</td>
</tr>
<tr>
<td>X20SP1130</td>
<td>Not detected</td>
<td>Not detected</td>
</tr>
<tr>
<td>X20SC2212</td>
<td>Not detected</td>
<td>Not detected</td>
</tr>
<tr>
<td>X67SC4122.L12</td>
<td>Not detected</td>
<td>Not detected</td>
</tr>
</tbody>
</table>

Open circuit (output type A and B)

<table>
<thead>
<tr>
<th>Error / module</th>
<th>Disable OSSD = No</th>
<th>Disable OSSD = Yes-ATTENTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SC0xxx</td>
<td>Not detected</td>
<td>Not detected</td>
</tr>
<tr>
<td>X20SLxxx</td>
<td>Not detected</td>
<td>Not detected</td>
</tr>
<tr>
<td>X20SRTxxx</td>
<td>Not detected</td>
<td>Not detected</td>
</tr>
<tr>
<td>X20SOx1x0</td>
<td>Not detected</td>
<td>Not detected</td>
</tr>
<tr>
<td>X20SO6300</td>
<td>Not detected</td>
<td>Not detected</td>
</tr>
<tr>
<td>X20SP1130</td>
<td>Not detected</td>
<td>Not detected</td>
</tr>
<tr>
<td>X20SC2212</td>
<td>Not detected</td>
<td>Not detected</td>
</tr>
<tr>
<td>X67SC4122.L12</td>
<td>Not detected</td>
<td>Not detected</td>
</tr>
</tbody>
</table>

Short circuit between SOx+ (output type A) and SOx- (output type A)

<table>
<thead>
<tr>
<th>Error / module</th>
<th>Disable OSSD = No</th>
<th>Disable OSSD = Yes-ATTENTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20SC0xxx</td>
<td>Not detected</td>
<td>Detected</td>
</tr>
<tr>
<td>X20SLxxx</td>
<td>Not detected</td>
<td>Not detected</td>
</tr>
<tr>
<td>X20SRTxxx</td>
<td>Not detected</td>
<td>Not detected</td>
</tr>
<tr>
<td>X20SOx1x0</td>
<td>Not detected</td>
<td>Detected</td>
</tr>
</tbody>
</table>

Danger!

With "Disable OSSD = Yes-ATTENTION", the module has reduced error detection capabilities and no longer meets the requirements for SIL 3 per EN 62061:2013 or PL e per EN ISO 13849-1:2015.

In order to meet the requirements for applications up to SIL 2 per EN 62061:2013 or PL d per EN ISO 13849-1:2015, the user must check the safety function on a daily basis when using type B output channels.

For type B2 output channels, it is also important to ensure that all of the module’s output channels are simultaneously in a switched-off state for at least 1 s during this test.

On X20SRTxxx modules, each output channel being used must be checked before the first safety request and every 24 hours. For this check, the corresponding channel must be switched on and off at least once.

Danger!

Possible error behavior of the actuators must be analyzed and avoided using corresponding responses (positively driven read-back contacts on a contactor, pressure switch on valves, etc.).

Danger!

This danger warning applies to all the modules listed in the "SO error detection" table with the exception of output channels of type A!

If SOx is shorted to high potentials, this will be detected by the module, but the connected actuator cannot be cut off due to the "only-plus-switching" design of the channel. Make sure that the wiring is correct in order to rule out SOx short circuits to high potentials (see EN ISO 13849-2:2012, Annex D.2.4, Table D.4).
9 Input circuit diagram

Figure 17: Input circuit diagram
10 Type A output circuit diagram

Type A digital output channels are designed for positive and GND switching inside the module.

![Type A output circuit diagram](image)

Figure 18: Type A output circuit diagram
11 Type B output circuit diagram

Type B digital output channels are designed for positive and positive switching inside the module.

![Type B output circuit diagram](image)

Figure 19: Type B output circuit diagram

12 Minimum cycle time

The minimum cycle time specifies the time up to which the bus cycle can be reduced without communication errors occurring.

<table>
<thead>
<tr>
<th>Minimum cycle time</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 µs</td>
</tr>
</tbody>
</table>

13 I/O update time

The time needed by the module to generate a sample is specified by the I/O update time.

<table>
<thead>
<tr>
<th>Minimum I/O update time</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 µs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum I/O update time for input channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>1150 µs + Filter time (see chapter "Filter")</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum I/O update time for output channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300 µs</td>
</tr>
</tbody>
</table>
14 Filter

All safe digital input modules are equipped with separately configurable switch-on and switch-off filters. The functionality of the filters depends on the firmware version and is illustrated in the following table and figures:

<table>
<thead>
<tr>
<th>Module type</th>
<th>Version</th>
<th>TOFF filter diagram</th>
<th>Filter time to be considered in addition to the total response time</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O modules</td>
<td><301</td>
<td>Diagram 1</td>
<td>2× TOFF filter time</td>
</tr>
<tr>
<td>SafeLOGIC-X</td>
<td>301, 311, 312</td>
<td>Diagram 1</td>
<td>2× TOFF filter time</td>
</tr>
<tr>
<td>I/O modules</td>
<td>≥301</td>
<td>Diagram 2</td>
<td>1× TOFF filter time</td>
</tr>
<tr>
<td>SafeLOGIC-X</td>
<td>≥302, ≥313</td>
<td>Diagram 2</td>
<td>1× TOFF filter time</td>
</tr>
</tbody>
</table>

Figure 20: SI input filter - Diagram 1

Figure 21: SI input filter - Diagram 2

Key:
- input_signal: Status of the input channel
- filtered_signal: Filtered status of the input channel. This is used as an input for the PLCopen function block and forwarded to the SafeLOGIC controller
- t_off_intern: Internal parameter (5 ms) for suppressing "external" test pulses (only with "Pulse Mode = External")
- t_off_User: Parameter for the switch-off filter
- t_on_User: Parameter for the switch-on filter

Unfiltered
The input state is collected with a fixed offset to the network cycle and transferred.
Switch-on filter

When switching from 0 to 1, the filtered status is collected with a fixed offset to the network cycle and transferred. The filter value can be configured (limit values are listed in the technical data).

Danger!

Errors that result from cross faults to other signals are detected by the module within the error detection time at the latest. By default, the switch-on filter is set to the error detection time value, which filters out faulty signals caused by possible cross faults. If the switch-on filter is set to a value smaller than the error detection time, faulty signals can cause temporary switch-on pulses to occur.

Information:

The actual effective filter depends on the I/O cycle time of the module. The actual effective filter can therefore deviate below the input value by the I/O cycle time (see the technical data for the module). If filter times are set less than the I/O cycle time of the module, no filter is effective.

Switch-off filter

When switching from 1 to 0, the filtered status is collected with a fixed offset to the network cycle and transferred. The switch-off filter can be configured separately. This makes it possible to use the switch-off filter in actual applications (e.g. testing gaps of the light curtain) and to shorten response times. The filter value can be configured (limit values are listed in the technical data).

Danger!

Configuring a switch-off filter lengthens the safety response time!

The configured filter value must be added to the total response time once or twice depending on the firmware version (for details, see the chapter "Filters" in the technical data sheet). Configuring a switch-off filter causes signals with a low phase shorter than the switch-off filter to be filtered out. If this results in a problem concerning safety functionality, then the switch-off filter must be set to 0.

To minimize the effect of EMC interference, the max. line lengths between the pulse output and input specified in the technical data must be taken into account.

When connecting devices with OSSD signals (signals with test pulses), you must select a switch-off filter in each case that is substantially smaller than the repeat rate of the test pulses.

Information:

The actual effective filter depends on the I/O cycle time of the module. The actual effective filter can therefore deviate below the input value by the I/O cycle time (see the technical data for the module). If filter times are set less than the I/O cycle time of the module, no filter is effective.

Danger!

If "Pulse Mode = External" is used in the channel configuration, then an additional TOFF filter with 5 ms is enabled in the module. The corresponding information regarding the TOFF filter must also be considered when using the "Pulse Mode = External" setting.

15 Enabling principle

Each output channel has an additional standard switching signal that can be used to access the output channel from the standard application. As soon as the output channel has been enabled from a safety-related point of view (the setting of the channel is enabled from the point of view of the safety technology), the output channel can be set or cleared in the standard application independently of the additional safety-related runtime and jitter times.

Use of the enabling principle is specified in the I/O configuration in Automation Studio.
16 Restart behavior

Each digital input channel is not equipped with an internal restart interlock, which means that the associated channel data reverts back to the proper state automatically after an error situation on the module and/or network. It is the responsibility of the user to connect the channel data of the safe input channels correctly and to provide them with a restart interlock. The restart interlocks of PLCopen function blocks can be used here, for example. Using input channels without a correctly connected restart interlock can result in an automatic restart.

Each output channel is equipped with an internal restart interlock, which means that the following sequence must be followed in order to switch on a channel after an error situation on the module/network and/or after ending the safety function:

- Correct all module, channel or communication errors.
- Enable the safety-related signal for this channel (SafeOutput, etc.).
- Pause to ensure that the safety-related signal has been processed on the module (min. 1 network cycle).
- Positive edge on the release channel

For switching the release signal, the notes for manual reset function in EN ISO 13849-1:2015 must be observed. The restart interlock functions independently of the enabling principle, which means that the behavior described above is not influenced by the parameter settings for the enabling principle or by the chronological position of the functional switching signal.

An automatic restart of the module can be configured by setting parameters. With this function, the output channel can be enabled using safety technology without an additional signal edge on the release channel. This function remains active as long as the release signal is TRUE and there is no error situation on the module/network.

Regardless of this parameter, a positive edge is required on the release channel for enabling the output channel in the following situations:

- After switching on
- After correcting an error on the safe communication channel
- After correcting a channel error
- After the release signal drops out

The automatic restart is configured in SafeDESIGNER using the channel parameters. If using an automatic restart, note the information in EN ISO 13849-1:2015.

Danger!

Configuring an automatic restart can result in critical safety conditions. Take additional measures to ensure proper safety-related functionality.
17 Register description

17.1 Parameters in the I/O configuration

Group: Function model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function model</td>
<td>This parameter is reserved for future functional expansions.</td>
<td>Default</td>
<td>-</td>
</tr>
</tbody>
</table>

Group: General

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module supervised</td>
<td>System behavior when a module is missing</td>
<td>On</td>
<td>-</td>
</tr>
<tr>
<td>Channel status information</td>
<td>This parameter enables/disables channel-specific status information in the I/O mapping.</td>
<td>On</td>
<td>-</td>
</tr>
<tr>
<td>State number of 2-channel evaluation</td>
<td>This parameter enables/disables the status information of dual-channel evaluation.</td>
<td>Off</td>
<td>-</td>
</tr>
<tr>
<td>Restart inhibit state numbers</td>
<td>This parameter enables/disables restart interlock status information.</td>
<td>Off</td>
<td>-</td>
</tr>
<tr>
<td>SafeLOGIC ID</td>
<td>In applications with multiple SafeLOGIC controllers, this parameter defines the module's association with a particular SafeLOGIC controller.</td>
<td>Assigned automatically</td>
<td>-</td>
</tr>
<tr>
<td>SafeMODULE ID</td>
<td>Unique safety address of the module</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>SafeDESIGNER project</td>
<td>Name of the safety project</td>
<td>Assigned automatically</td>
<td>-</td>
</tr>
<tr>
<td>SafeDESIGNER version</td>
<td>SafeDESIGNER version for the safety project</td>
<td>Assigned automatically</td>
<td>-</td>
</tr>
<tr>
<td>Blackout mode</td>
<td>This parameter enables blackout or standalone mode (see section Blackout mode in Automation Help under: Hardware → X20 system → Additional information → Blackout mode).</td>
<td>Off</td>
<td>-</td>
</tr>
</tbody>
</table>

Group: Output signal path

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DigitalOutputxx</td>
<td>This parameter specifies the mode that can be used by the standard application to access the output channel.</td>
<td>Direct</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>The output channel can be accessed directly by the standard application. Signals "DigitalOutputxx" are available in the I/O mapping accordingly.</td>
</tr>
<tr>
<td>Via SafeLOGIC</td>
<td>The output channel cannot be accessed directly by the standard application. Signals "DigitalOutputxx" are not available in the I/O mapping accordingly. It is only possible for the standard application to influence the output channel via the communication channels from the CPU to the SafeLOGIC controller.</td>
</tr>
</tbody>
</table>

Table 14: I/O configuration parameters: Function model

Table 15: I/O configuration parameters: General

Table 16: I/O configuration parameters: Output signal path
Group: SafeDESIGNER to SafeLOGIC communication

Starting with SafeLOGIC V1.4.0.0 and Automation Runtime V3.04:

When SPROXY is enabled, the SafeLOGIC controller can be accessed via a TCP/IP port on the standard CPU. This uses the SafeDESIGNER setting "SL communication via the CPU" (SafeDESIGNER V2.80 or higher).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activate SPROXY</td>
<td>Enables the SafeDESIGNER online connection</td>
<td>On</td>
<td>-</td>
</tr>
<tr>
<td>Server communication port</td>
<td>TCP/IP port number used to access the SafeLOGIC controller</td>
<td>50000</td>
<td>-</td>
</tr>
</tbody>
</table>

Note:
If multiple SafeLOGIC controllers are being used in the project, then a different port number must be configured for each one!

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of BOOL channels</td>
<td>Number of BOOL channels from the CPU to the SafeLOGIC controller</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Number of INT channels</td>
<td>Number of INT channels from the CPU to the SafeLOGIC controller</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Number of UINT channels</td>
<td>Number of UINT channels from the CPU to the SafeLOGIC controller</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Number of DINT channels</td>
<td>Number of DINT channels from the CPU to the SafeLOGIC controller</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Number of UDINT channels</td>
<td>Number of UDINT channels from the CPU to the SafeLOGIC controller</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 17: I/O configuration parameters: SafeDESIGNER to SafeLOGIC communication

Group: CPU to SafeLOGIC communication

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of BOOL channels</td>
<td>Number of BOOL channels from the CPU to the SafeLOGIC controller</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Number of INT channels</td>
<td>Number of INT channels from the SafeLOGIC controller to the CPU</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Number of UINT channels</td>
<td>Number of UINT channels from the SafeLOGIC controller to the CPU</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Number of DINT channels</td>
<td>Number of DINT channels from the SafeLOGIC controller to the CPU</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Number of UDINT channels</td>
<td>Number of UDINT channels from the SafeLOGIC controller to the CPU</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 18: I/O configuration parameters: CPU to SafeLOGIC communication

Group: SafeLOGIC to CPU communication

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of BOOL channels</td>
<td>Number of BOOL channels from the SafeLOGIC controller to the CPU</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Number of INT channels</td>
<td>Number of INT channels from the SafeLOGIC controller to the CPU</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Number of UINT channels</td>
<td>Number of UINT channels from the SafeLOGIC controller to the CPU</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Number of DINT channels</td>
<td>Number of DINT channels from the SafeLOGIC controller to the CPU</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Number of UDINT channels</td>
<td>Number of UDINT channels from the SafeLOGIC controller to the CPU</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 19: I/O configuration parameters: SafeLOGIC to CPU communication

Group: SafeLOGIC to SafeLOGIC communication

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use as source SafeLOGIC</td>
<td>This parameter configures this SafeLOGIC controller as a data source for an-</td>
<td>Off</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>This SafeLOGIC controller is available as a data source for another SafeLOGIC con-</td>
</tr>
<tr>
<td></td>
<td>troller.</td>
</tr>
<tr>
<td>Off</td>
<td>This SafeLOGIC controller is not available as a data source for other SafeLOGIC c-</td>
</tr>
<tr>
<td></td>
<td>ontrollers.</td>
</tr>
</tbody>
</table>

| Extended source SafeLOGIC communication (Safety Release 1.4 and Automation Runtime V3.08 required) | This parameter enables the option of configuring the number of data points for "SafeLOGIC to SafeLOGIC communication" for connections where this SafeLOGIC controller serves as a data source for another SafeLOGIC controller. | Off | - |

Table 20: I/O configuration parameters: SafeLOGIC to SafeLOGIC communication
17.2 Parameters in SafeDESIGNER

Group: Basic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min required FW Rev</td>
<td>This parameter is reserved for future functional expansions.</td>
<td>Basic release</td>
<td>-</td>
</tr>
<tr>
<td>Node Guarding Timeout</td>
<td>Timeout for changing the safety modules to the PRE_OPERATIONAL state after the SafeLOGIC controller drops out or if there is a communication problem between the safety module and the SafeLOGIC controller. This parameter also defines how long it takes for the SafeLOGIC controller to detect a missing module.</td>
<td>60 s</td>
<td>s</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Permissible values: 30 to 300 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The shorter the time, the greater the amount of asynchronous data traffic.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• This setting is not critical to safety functionality. The time for safely cutting off actuators is determined independently of this.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| External Startup Flags | Enables external startup flags | No | - |

Number of scans	This parameter defines the number of module search scans completed while booting. This parameter is used to optimize the startup behavior of the system, especially if optional modules are configured but not available.	5	-
Notes			
	• Permissible values: 1 to 10		

| Activate Setup Mode on empty SafeKEY (hardware upgrade 1.10.2.x or later) | This parameter enables setup mode after downloading a project to a blank SafeKEY / blank section of the CompactFlash card. | No | - |

| Auto acknowledge firmware mismatch (hardware upgrade 1.10.2.x or later) | This parameter enables automatic acknowledgment of a firmware exchange (acknowledgment request "Firmware Acknowledge"). | No | - |

| Auto acknowledge SafeKEY exchange (hardware upgrade 1.10.2.x or later) | This parameter enables automatic acknowledgment of a SafeKEY exchange (acknowledgment request "SafeKEY Exchange"). | No | - |

Table 21: SafeDESIGNER parameters: Basic

Danger!

If parameter "External Startup Flags" is set to "Yes-ATTENTION", thus enabling one of these functions to be used in SafeDESIGNER, then the associated notices in chapter "Operation via the AsSafety library" must be taken into account. Failure to do so can result in hazardous situations caused by malfunctions.

Information:

Startup time is also affected by the asynchronous bandwidth on the POWERLINK network. For optimization options, see Automation Help under Communication → POWERLINK → General information → Multiple asynchronous send.

Information:

The information in section "Setup mode" on page 74 must be observed when using parameter "Activate Setup Mode on empty SafeKEY". The information in section "Automatic acknowledgment" on page 57 must be observed when using parameters "Auto acknowledge firmware mismatch" and "Auto acknowledge SafeKEY exchange".
Group: Safety Response Time Defaults

The parameters for the safety response time are generally set in the same way for all stations involved in the application. This is why these parameters are configured for the SafeLOGIC controller in group "Safety Response Time Defaults" in SafeDESIGNER.

If "Manual Configuration = No" is set for the individual modules, then these default values are used.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default Safe Data Duration</td>
<td>This parameter specifies the maximum permitted data transmission time between the SafeLOGIC controller and SafeIO module. For more information about the actual data transmission time, see section Diagnostics and service → Diagnostics tools → Network analyzer → Editor → Calculation of safety runtime of Automation Help. The cycle time of the safety application must also be added. • Permissible values: 2000 to 10,000,000 μs (corresponds to 2 ms to 10 s)</td>
<td>150000</td>
<td>μs</td>
</tr>
<tr>
<td>Default Additional Tolerated Packet Loss</td>
<td>This parameter specifies the number of additional tolerated lost packets during data transfer. • Permissible values: 0 to 10</td>
<td>0</td>
<td>Packets</td>
</tr>
<tr>
<td>Default Packets per Node Guarding</td>
<td>This parameter specifies the maximum number of packets used for node guarding. • Permissible values: 1 to 255</td>
<td>5</td>
<td>Packets</td>
</tr>
</tbody>
</table>

Note
• The larger the configured value, the greater the amount of asynchronous data traffic.
• This setting is not critical to safety functionality. The time for safely cutting off actuators is determined independently of this.

Table 22: SafeDESIGNER parameters: Safety Response Time Defaults
X20(c)SLXxxx

Group: Module Configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Machine Options</td>
<td>Enables external machine options</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Parameter value</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes-ATTENTION</td>
<td>Enables external machine options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Disables external machine options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle Time max</td>
<td>Parameter for checking whether a maximum time between 2 SafeLOGIC cycles is exceeded.</td>
<td>40000</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>• Permissible values: 2100 to 41,000 µs (corresponds to 2.1 to 41 ms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Important:</td>
<td>This value should not be the same as the actual cycle time; jitter must also be taken into account. The actual cycle time is influenced by the SafeDESIGNER application and the "SLXioCycle" data point. The actual cycle time of the safety application can be seen in the SafeLOGIC "Info" dialog box.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disable OSSD</td>
<td>This parameter can be used to switch off automatic testing of the output driver for all of the module's channels.</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Parameter value</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes-ATTENTION</td>
<td>Automatic testing of the output driver is switched off.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Automatic testing of the output driver is enabled.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 23: SafeDESIGNER parameters: Module Configuration

Danger!

If parameter "External Machine Options" is set to "Yes-ATTENTION", thus enabling one of these functions to be used in SafeDESIGNER, then the associated notices in chapter "Operation via the AsSafety library" must be taken into account. Failure to do so can result in hazardous situations caused by malfunctions.

Danger!

With "Disable OSSD = Yes-ATTENTION", the module has reduced error detection capabilities and no longer meets the requirements for SIL 3 per EN 62061:2013 or PL e per EN ISO 13849-1:2015.

In order to meet the requirements for applications up to SIL 2 per EN 62061:2013 or PL d per EN ISO 13849-1:2015, the user must check the safety function on a daily basis when using type B output channels.

For type B2 output channels, it is also important to ensure that all of the module's output channels are simultaneously in a switched-off state for at least 1 s during this test.

On X20SRTxxx modules, each output channel being used must be checked before the first safety request and every 24 hours. For this check, the corresponding channel must be switched on and off at least once.
Group: SafeDigitalInputxx

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Source</td>
<td>This parameter can be used to specify the pulse source for the input channel. All available pulse outputs can be specified as "Pulse Source". The default values can be determined using the following table:</td>
<td>See table</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel</td>
<td>Default "Pulse Source"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 5</td>
<td>Channel 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 6</td>
<td>Channel 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3, 7</td>
<td>Channel 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4, 8</td>
<td>Channel 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note: If a value other than "Default" is set for "Pulse Source", then the "Pulse Mode" parameter must be set to "Internal" on the respective channel of the selected "Pulse Source".</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse Mode</td>
<td>This parameter can be used to specify the "Pulse Mode" for the input channel.</td>
<td>Internal</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Table 24: SafeDESIGNER parameters: SafeDigitalInputxx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter Off</td>
<td>Switch-off filter for the channel to remove potentially disruptive signal low phases.</td>
<td>0</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>• Permissible values: 0 to 500,000 μs (corresponds to 0 to 0.5 s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter On</td>
<td>Switch-on filter for the channel that can be used to "debounce" the signals. This function also makes it possible for the module to lengthen a switch-off signal that would otherwise be too short.</td>
<td>200000</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>• Permissible values: 0 to 500,000 μs (corresponds to 0 to 0.5 s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrepancy Time</td>
<td>Parameter only available for odd-numbered channels. This parameter specifies the maximum time for "dual-channel evaluation", during which the status of both physical individual channels can be undefined without triggering an error.</td>
<td>50000</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>• Permissible values: 0 to 10,000,000 μs (corresponds to 0 to 10 s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two-Channel Processing Mode</td>
<td>This parameter specifies the type of dual-channel evaluation. Permissible values:</td>
<td>None</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>• None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Equivalent</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Antivalent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Danger!

Configuring a switch-off filter lengths the safety response time! The configured filter value must be added to the total response time.

Danger!

Signals with a low phase shorter than the safety response time can potentially be lost. Such signals should be lengthened accordingly using the "switch-on filter" function on the input module.

Danger!

Configuring a switch-off filter causes signals with a low phase shorter than the switch-off filter to be filtered out. If this results in a problem concerning safety functionality, then the switch-off filter must be set to 0. Lengthening the low phase with a switch-on filter is not possible in these cases.
Table 25: SafeDESIGNER parameters: SafeDigitalOutputxx

Danger!

Configuring an automatic restart can result in critical safety conditions. Take additional measures to ensure proper safety-related functionality.
17.3 Channel list

<table>
<thead>
<tr>
<th>Channel name</th>
<th>Access via Automation Studio</th>
<th>Access via SafeDESIGNER</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ModuleOk</td>
<td>Read</td>
<td>-</td>
<td>BOOL</td>
<td>Indicates if the module is OK</td>
</tr>
<tr>
<td>SerialNumber</td>
<td>Read</td>
<td>-</td>
<td>UDINT</td>
<td>Module serial number</td>
</tr>
<tr>
<td>ModuleID</td>
<td>Read</td>
<td>-</td>
<td>UINT</td>
<td>Module ID</td>
</tr>
<tr>
<td>HardwareVariant</td>
<td>Read</td>
<td>-</td>
<td>UINT</td>
<td>Hardware variant</td>
</tr>
<tr>
<td>FirmwareVersion</td>
<td>Read</td>
<td>-</td>
<td>UINT</td>
<td>Firmware version of the module</td>
</tr>
<tr>
<td>SLXioCycle</td>
<td>Read</td>
<td>-</td>
<td>UDINT</td>
<td>Exchanging cyclic data between the SafeLOGIC-X controller and CPU (time in µs). This value is influenced by:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Quantity and data width of SafeNODEs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Cycle times set in Automation Studio (POWER-LINK, X2X, Crosslink task)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Automation Studio configuration (see items above)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The value must be <30 ms; otherwise, the max. SafetyLOGIC-X cycle time (parameter "Cycle Time max") is exceeded. In addition, values <15 ms are recommended since large values slow down the SafeDESIGNER online connection.</td>
</tr>
<tr>
<td>UDID_low</td>
<td>(Read)</td>
<td>-</td>
<td>UDINT</td>
<td>UDID, lower 4 bytes</td>
</tr>
<tr>
<td>UDID_high</td>
<td>(Read)</td>
<td>-</td>
<td>UINT</td>
<td>UDID, upper 2 bytes</td>
</tr>
<tr>
<td>SafetyFWversion1</td>
<td>(Read)</td>
<td>-</td>
<td>UINT</td>
<td>Firmware version - Safety processor 1</td>
</tr>
<tr>
<td>SafetyFWversion2</td>
<td>(Read)</td>
<td>-</td>
<td>UINT</td>
<td>Firmware version - Safety processor 2</td>
</tr>
<tr>
<td>SafetyFWversionSCM</td>
<td>(Read)</td>
<td>-</td>
<td>UINT</td>
<td>Firmware version - SCMar</td>
</tr>
<tr>
<td>SafetyFWcrc1</td>
<td>(Read)</td>
<td>-</td>
<td>UINT</td>
<td>CRC of firmware header on safety processor 1</td>
</tr>
<tr>
<td>SafetyFWcrc2</td>
<td>(Read)</td>
<td>-</td>
<td>UINT</td>
<td>CRC of firmware header on safety processor 2</td>
</tr>
<tr>
<td>AppISDcrc</td>
<td>(Read)</td>
<td>-</td>
<td>UDINT</td>
<td>CRC of the SafeDESIGNER application on the module</td>
</tr>
<tr>
<td>AppISDtime</td>
<td>(Read)</td>
<td>-</td>
<td>UDINT</td>
<td>Timestamp of the SafeDESIGNER application on the module</td>
</tr>
<tr>
<td>AppMOptCRC</td>
<td>(Read)</td>
<td>-</td>
<td>UDINT</td>
<td>CRC of the external machine options on the module</td>
</tr>
<tr>
<td>AppMOptTime</td>
<td>(Read)</td>
<td>-</td>
<td>UDINT</td>
<td>Timestamp of the external machine options on the module</td>
</tr>
<tr>
<td>Bootstate</td>
<td>(Read)</td>
<td>-</td>
<td>UINT</td>
<td>Startup state of the module. Notes:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Some of the boot states do not occur during normal startup or are cyclic through so quickly that they are not visible externally.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• The boot states usually cycle through in ascending order. There are cases, however, in which a previous value is captured.</td>
</tr>
</tbody>
</table>

Value Description

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0003</td>
<td>Startup communication processor OK, no communication to the safety processors (check 24 V supply voltage!)</td>
</tr>
<tr>
<td>0x0010</td>
<td>FAILSAFE. At least one of the safety processors is in the safe state.</td>
</tr>
<tr>
<td>0x0020</td>
<td>Internal communication to safety processors started</td>
</tr>
<tr>
<td>0x0024</td>
<td>Firmware update of safety processors or download of the SafeDESIGNER application to the safety processors</td>
</tr>
<tr>
<td>0x0040</td>
<td>Firmware of safety processors started</td>
</tr>
<tr>
<td>0x0440</td>
<td>Firmware of safety processors running</td>
</tr>
<tr>
<td>0x0840</td>
<td>Waiting for openSAFETY "Operational" (loading SafeDESIGNER application or no valid application exists, waiting on acknowledgments such as module exchange)</td>
</tr>
<tr>
<td>0x3440</td>
<td>Stabilizing cyclic openSAFETY data exchange. Note: If the boot state remains here, check SafeDESIGNER parameters "(Default) Safe Data Duration", "(Default) Additional Tolerated Packet Loss".</td>
</tr>
<tr>
<td>0x4040</td>
<td>RUN. Final state, startup completed.</td>
</tr>
</tbody>
</table>

Table 26: Channel list
<table>
<thead>
<tr>
<th>Channel name</th>
<th>Access via Automation Studio</th>
<th>Access via SafeDESIGNER</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLXbootState</td>
<td>(Read)</td>
<td>-</td>
<td>USINT</td>
<td>Startup state of the SafeLOGIC-X system</td>
</tr>
<tr>
<td>SafeOsState</td>
<td>(Read)</td>
<td>-</td>
<td>USINT</td>
<td>Status of the safety application. For details, see "SafeLOGIC "Info" dialog box in SafeDESIGNER*.</td>
</tr>
<tr>
<td>Diag1_Temp</td>
<td>(Read)</td>
<td>-</td>
<td>INT</td>
<td>Module temperature in °C</td>
</tr>
<tr>
<td>PLCopenFBKxxxx_state</td>
<td>Read</td>
<td>-</td>
<td>USINT</td>
<td>State number of dual-channel evaluation (PLCopen function block "Equivalent" or "Antivalent")</td>
</tr>
<tr>
<td>InputErrorStates</td>
<td>(Read)</td>
<td>-</td>
<td>UINT</td>
<td>Channel status, additional information for channel error</td>
</tr>
<tr>
<td>PulseoutputErrors</td>
<td>(Read)</td>
<td>-</td>
<td>UDINT</td>
<td>Channel status, additional information for channel error</td>
</tr>
<tr>
<td>SafeDigitalInputxx</td>
<td>Read</td>
<td>Read</td>
<td>SAFEBOOL</td>
<td>Physical channel SI xx</td>
</tr>
<tr>
<td>SafeTwoChannelInputxyy</td>
<td>Read</td>
<td>Read</td>
<td>SAFEBOOL</td>
<td>Dual-channel evaluation of channel SI xy/yy</td>
</tr>
<tr>
<td>SafeInputOkxx</td>
<td>Read</td>
<td>Read</td>
<td>SAFEBOOL</td>
<td>Status of physical channel SI xx</td>
</tr>
<tr>
<td>SafeTwoChannelOkxyy</td>
<td>Read</td>
<td>Read</td>
<td>SAFEBOOL</td>
<td>Status of dual-channel evaluation of channel SI xy/yy</td>
</tr>
<tr>
<td>DigitalOutputxx</td>
<td>Write</td>
<td>-</td>
<td>BOO</td>
<td>Enable signal - Channel SO xx</td>
</tr>
<tr>
<td>SafeDigitalOutputxx</td>
<td>-</td>
<td>Write</td>
<td>SAFEBOOL</td>
<td>Safe channel SO xx</td>
</tr>
<tr>
<td>SafeOutputOKxx</td>
<td>Read</td>
<td>Read</td>
<td>SAFEBOOL</td>
<td>Status of channel SO xx</td>
</tr>
<tr>
<td>ReleaseOutputxx</td>
<td>-</td>
<td>Write</td>
<td>BOO</td>
<td>Release signal for the restart interlock of channel SO xx</td>
</tr>
<tr>
<td>PhysicalStateChannelxx</td>
<td>Read</td>
<td>Read</td>
<td>BOO</td>
<td>Read-back value of physical channel SO xx</td>
</tr>
</tbody>
</table>

2) Possible to establish connection to the SafeLOGIC-X controller via the SafePLC window in SafeDESIGNER (see dialog box "SafePLC" (control dialog box) in Automation Help).

Table 26: Channel list
Channel List

<table>
<thead>
<tr>
<th>Channel name</th>
<th>Access via Automation Studio</th>
<th>Access via SafeDESIGNER</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBK_Status_1</td>
<td>Read</td>
<td>-</td>
<td>UDINT</td>
<td>State number of the restart interlock of channel x. See “Restart interlock state diagram”.</td>
</tr>
<tr>
<td>BOOL1xx</td>
<td>Write</td>
<td>Read</td>
<td>BOOL</td>
<td>CPU to SafeLOGIC communication channel</td>
</tr>
<tr>
<td>INT1xx</td>
<td>Write</td>
<td>Read</td>
<td>INT</td>
<td>CPU to SafeLOGIC communication channel</td>
</tr>
<tr>
<td>UINT1xx</td>
<td>Write</td>
<td>Read</td>
<td>UINT</td>
<td>CPU to SafeLOGIC communication channel</td>
</tr>
<tr>
<td>DINT1xx</td>
<td>Write</td>
<td>Read</td>
<td>DINT</td>
<td>CPU to SafeLOGIC communication channel</td>
</tr>
<tr>
<td>BOOL0xx</td>
<td>Read</td>
<td>Write</td>
<td>BOOL</td>
<td>SafeLOGIC to CPU communication channel</td>
</tr>
<tr>
<td>INT0xx</td>
<td>Read</td>
<td>Write</td>
<td>INT</td>
<td>SafeLOGIC to CPU communication channel</td>
</tr>
<tr>
<td>UINT0xx</td>
<td>Read</td>
<td>Write</td>
<td>UINT</td>
<td>SafeLOGIC to CPU communication channel</td>
</tr>
<tr>
<td>DINT0xx</td>
<td>Read</td>
<td>Write</td>
<td>DINT</td>
<td>SafeLOGIC to CPU communication channel</td>
</tr>
<tr>
<td>BOOLxx</td>
<td>-</td>
<td>Write</td>
<td>SAFEBOOL</td>
<td>SafeLOGIC to SafeLOGIC communication channel</td>
</tr>
<tr>
<td>SafeMachineOptionxx</td>
<td>-</td>
<td>Read</td>
<td>SAFEBOOL</td>
<td>Internal channel for machine options</td>
</tr>
</tbody>
</table>

Table 26: Channel list

1. This data is accessed in Automation Studio using the ASIOACC library.

Information:

Channels for SafeLOGIC to SafeLOGIC communication: See section "Display in SafeDESIGNER"
PLCopen state diagrams

The following state diagrams illustrate the effect of the "Antivalent" and "Equivalent" PLCopen function blocks integrated in the module.

The hexadecimal value in parentheses corresponds to the state number provided via the channels "PLCopenFBKxy_state" and "PLCopenFBKxxxy_state".

The following PLCopen state diagrams show the function for the "SafeAntivalentInput0102" and "SafeEquivalentInput0102" channels. The same diagrams are valid for the "SafeAntivalentInputxxyy" and "SafeEquivalentInputxxyy" channels, but "SafeDigitalInput01" and "SafeDigitalInput02" are to be replaced by the respective input.

In addition to the PLCopen specification, the SignalOK states of channels "SafeChannelOK01" and "SafeChannelOK02" are also checked.

If the SignalOK status of at least one of the two channels is not OK, the function block goes into an error state and the output signal is set to 0.

Error state "ERROR 4" is not taken from the PLCopen specification.

Figure 22: "Antivalent" function block - State diagram
Figure 23: "Equivalent" function block - State diagram
Restart interlock state diagram

The following state diagram illustrates the effect of the restart interlock integrated in the module. The hexadecimal value in parentheses corresponds to the state number that is provided via the channel "FBK_Status_1". For detailed information regarding restart interlock, see section "Restart behavior".

Information:

To set an output channel, a positive edge on signal "ReleaseOutput0x" is required after signal "SafeDigitalOutput0x". This edge must occur at least 1 network cycle after signal "SafeDigitalOutput0x". If this timing is not adhered to, the output channel remains inactive.

Information:

For the maximum switching frequency, see the technical data for the module.

Figure 24: Restart interlock - State diagram
17.4 SafeLOGIC "Info" dialog box in SafeDESIGNER

Dialog box "SafePLC info" appears if the "Info" button in dialog box "SafePLC" (control dialog box) or in dialog box "Debug" is pressed.

The dialog box shows information about the current project in the safe programming system, the project stored/running on the safety controller, the current status of the safety controller, debugging information, etc.

![SafeLOGIC "Info" dialog box](image)

<table>
<thead>
<tr>
<th>Project</th>
<th>Project-defining data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe PLC</td>
<td>Project data saved on the SafeKEY being used for the SafeLOGIC controller</td>
</tr>
<tr>
<td>Name</td>
<td>Name of the project</td>
</tr>
<tr>
<td>Date</td>
<td>Date of the last change</td>
</tr>
<tr>
<td>CRC</td>
<td>CRC</td>
</tr>
<tr>
<td>User</td>
<td>User who made the last change</td>
</tr>
<tr>
<td>PC</td>
<td>SafeDESIGNER project data on the PC</td>
</tr>
<tr>
<td>Name</td>
<td>Name of the project</td>
</tr>
<tr>
<td>Date</td>
<td>Date of the last change</td>
</tr>
<tr>
<td>CRC</td>
<td>CRC, "- n/a -" if the project is not yet compiled</td>
</tr>
<tr>
<td>User</td>
<td>User who made the last change</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Safe PLC</th>
<th>Status and information about the SafeLOGIC controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Indicates the operating states of the safety controller.</td>
</tr>
<tr>
<td>No</td>
<td>No variables are forced.</td>
</tr>
<tr>
<td>Yes</td>
<td>Variables are forced.</td>
</tr>
<tr>
<td>Signals forced</td>
<td></td>
</tr>
<tr>
<td>Errors</td>
<td>Information regarding error messages present in the SafeDESIGNER message window</td>
</tr>
<tr>
<td>Cycle time</td>
<td>Cycle time that is actually required, maximum value since the last power up</td>
</tr>
<tr>
<td>Execution time</td>
<td>Actual application execution time</td>
</tr>
<tr>
<td>Used memory</td>
<td>Bar that shows the system resources being used</td>
</tr>
<tr>
<td>Firmware version</td>
<td>Firmware version</td>
</tr>
</tbody>
</table>
18 Maintenance scenarios

The operating elements on the SafeLOGIC controller (X20SL8xxx series) or the operating elements of the "Remote Control" in SafeDESIGNER (X20SL8xxx series and X20SLXxxx series) are available to handle the following maintenance scenarios.

LED status indicators

- **POWERLINK interface**
- **Integrated power supply**
- **Acknowledgment button**
- **Selector switch**
- **Safety processor**
- **Node number switch**
- **SafeKEY slot**
- **POWERLINK connection with 2x RJ45** for simple wiring
- **Terminal block for SafeLOGIC supply** with X20SL8101 also for I/O supply

![Figure 26: X20SL810x - Operating elements](image1)

For a detailed description of operating elements, see section Operating and connection elements of the technical data sheet for X20SL8xxx-series devices.

For a detailed description of operating elements, see SafeDESIGNER section Operating elements of the Remote Control in Automation Help.

18.1 Module replacement

The SafeLOGIC controller recognizes on its own when safe modules have been replaced. Following a module replacement, the complete system (SafeLOGIC, SafeLOGIC-X system components, openSAFETY) automatically ensures that the module operates again using the correct parameters and that incompatible modules are rejected. Nevertheless, the following errors are still possible after a module replacement:

- Terminals swapped between several modules
- Wiring errors
- SafeIO modules swapped with each other

18.1.1 Terminals swapped between several modules

To determine whether terminals have been swapped between several modules, the user must test the safety function by performing a wiring test.

Danger!

The user must ensure that the wiring test can detect when terminals have been swapped.

Be sure to validate the entire safety function!
18.1.2 Wiring errors

A wiring error can occur if the wiring between the sensor or actuator and the X20 terminal is disconnected. To detect this sort of error in the wiring, the user must test the safety function by performing a wiring test.

Danger!

The user must make sure that the wiring test can detect wiring errors.

Be sure to validate the entire safety function!

18.1.3 SafeIO modules swapped with each other

Errors in the standard application can cause SafeIO modules to become swapped, which appears identical to a module replacement to the SafeLOGIC controller. To detect this error, the user must confirm the number of replaced modules. This links the number of modules replaced by the user and the replacements recognized by the system so that any additional replacements can be detected.

The user is informed of the number of detected module replacements via the MXCHG status. In the process, the module identifiers (UDIDs) on the SafeKEY or in the safety section of the CompactFlash card are compared to the UDIDs of the modules in the network.

If there are 1, 2, 3 or 4 different UDIDs, the user is provided information about the exact number of differences. The user must then check whether the number of replaced modules recognized by the SafeLOGIC controller corresponds to the actual number of replaced modules. If the values are the same, the user must confirm the number and perform a wiring test. This wiring test can be limited specifically to the modules that have been replaced.

If there are more than 4 different UDIDs, a standard message is provided indicating that there are differences on more than 4 modules. In this case, the user must perform a comprehensive wiring test for all modules.

If the number of modules indicated and the actual number of replaced modules do not match, the user must confirm the number of replacements determined by the SafeLOGIC controller and perform a comprehensive wire test for all modules.

Danger!

Be sure to validate the entire safety function!
18.1.4 Replacing an individual module

If only one module was replaced (MXCHG status indicates 1 module was replaced) and the wiring was not changed, the user can skip the wiring test because in this case the following errors can be ruled out:

- Terminals swapped between several modules
- Wiring errors
- SafeIO modules swapped with each other

Danger!

The wiring test can only be excluded if no additional changes are made when replacing an individual module (e.g. unplugging terminals, removing the wiring, etc.).

18.1.5 Confirming a module replacement

To confirm the number of the replaced modules, the correct number of modules must be selected:

- 1 - One module replaced
- 2 - Two modules replaced
- 3 - Three modules replaced
- 4 - Four modules replaced
- n - Five or more modules replaced

The replacement can be confirmed and the accompanying wiring test can be limited to the replaced modules when up to four modules are replaced. When more than four modules are replaced, a comprehensive wiring test must be performed for all modules.

Following confirmation of the module replacement, the SafeLOGIC controller immediately commences a module scan.

Danger!

The user must ensure that the wiring test can detect a wiring error or when terminals have been swapped.

Be sure to validate the entire safety function!
18.2 Other errors in module configuration

The aforementioned differences are limited exclusively to module replacements. An error – "Missing module" status – is reported if a device is missing (except when the device is defined as optional), has an incorrect hardware code or other problems are present on the module (e.g. incorrect parameters that may not be changed by the SafeLOGIC controller). This status is only indicated if a module or firmware replacement is not being indicated. This status cannot be acknowledged.

Danger!

It is your responsibility to ensure that all necessary repair measures are initiated after an error occurs since subsequent errors can result in a hazard!

18.3 Acknowledging a firmware modification

A change to the firmware is indicated by the FW-ACKN status and must be confirmed using the FW-ACKN action. A firmware modification must always be concluded with full functional testing.

Danger!

Functional testing is only permitted to be performed by personnel familiar with the safety application and its functions and trained in the procedure of exchanging firmware.

Be sure to validate the entire safety function!

Danger!

Only use firmware versions listed in the FS certificates for B&R safety technology. These FS certificates are available for download from the B&R website at http://www.br-automation.com.

18.4 Triggering a module scan

A module scan determines if all configured modules are present in the application and if they correspond to the project configuration. The module scan runs automatically but at large time intervals. To minimize the time it takes for the SafeLOGIC controller to recognize a newly replaced module, this function can also be triggered manually by the user. The result of the scan is described in the following sections:

- "Module replacement"
- "Other errors in module configuration"
- "Acknowledging a firmware modification"

The process itself is started using the SCAN function and indicated using the "Scanning" status. The results are reported after the "Scanning" status is completed (e.g. three modules replaced).
18.5 SafeKEY or safety section of the CompactFlash card

The following data is stored on the SafeKEY (X20SL8xxx series) or in the safety section of the CompactFlash card (X20SLXxxx series):

- SafeDESIGNER application (application and all SafeDESIGNER parameters for the modules)
- Configuration (unique module code (UDID), firmware versions of modules)
- Subsequently loadable data elements (machine options, tables, etc.)

Size of the SafeDESIGNER application on the SafeKEY

The size of the current application on the SafeKEY is calculated by SafeDESIGNER during compilation and displayed in the message window (e.g. "The safety application uses 0.688 MB (11 sectors) memory.").

Notes:
- The output only takes the size of the SafeDESIGNER application into account. Space on the data storage device used by firmware or subsequently loadable data (tables, machine options, etc.) is not taken into account.
- If the online project comparison is not needed (see Automation Help → SafeDESIGNER), the download size of the application can be reduced by disabling the following communication setting: Online → Communication settings → Download project source to SL.

18.5.1 Removing a SafeKEY (X20SL8xxx series only)

Removing a SafeKEY always results in a change to BOOT mode, and the safety application is completely shut down.

Information:

Removing a SafeKEY during operation causes the SafeLOGIC controller to be restarted and all safety-related actuators to be cut off.

Removing a SafeKEY during operation can destroy the data on the SafeKEY.

Removing a SafeKEY during operation must therefore be avoided at all cost.

The "Backing up the SafeKEY" sequence is not affected by this general rule.

18.5.2 Acknowledging a SafeKEY replacement

Replacing a SafeKEY or replacing a CompactFlash card with a CompactFlash that has a modified safety section is indicated by the "FW-ACKN" status and must be acknowledged with the SK-XCHG function. Complete functional testing is then required.

Information:

A SafeKEY replacement can only be acknowledged if a valid SafeDESIGNER project has already been transferred to the SafeKEY or CompactFlash card.

Danger!

Replacing a SafeKEY or CompactFlash card will enable the safety application stored on the SafeKEY or CompactFlash card. Always check the project CRC and date that the safety application project was saved on the SafeKEY or CompactFlash card.

Danger!

Be sure to validate the entire safety function!
18.5.3 Changing the application on the SafeLOGIC controller by replacing the SafeKEY (X20SL8xxx series only)

All relevant configuration data and all application data and parameters are stored on the SafeKEY. In order to transfer the previous configuration data to a new SafeKEY when changing the application, the following sequence must be carried out.

- Set the selector switch to the SK-COPY position.
- Press the acknowledgment button - Action confirmed by the ENTER LED.
- The SafeKEY configuration data is saved on the SafeLOGIC controller. The SKEY LED blinks with each access.
- The FW-ACKN LED will flash after the copying procedure. This SafeKEY can now be replaced by the SafeKEY with the new application. 30 seconds are provided to do this. The FW-ACKN LED blink frequency increases after 20 seconds to signal the end of the replacement phase.
- The acknowledgment button must be pressed again after the new SafeKEY has been inserted. The selector switch remains on the setting SK-COPY.
- The internal, temporarily saved configuration data is saved on the new SafeKEY. A reset is then triggered automatically, and the data from the new SafeKEY is applied.
- Following the reset, the SafeKEY replacement must be acknowledged. To do this, move the selector switch to the setting SK-XCHG.
- Press the acknowledgment button - Action confirmed by the ENTER LED.
- Perform complete functional testing.

Information:
If the new SafeKEY is not acknowledged after 30 seconds, the function will end, i.e. if the function is triggered inadvertently, the copy function ends automatically after 30 seconds. If a SafeKEY is not inserted after 30 seconds, the SafeLOGIC controller switches to BOOT mode.

Danger!
This procedure enables the safety application stored on the new SafeKEY. Always check the project CRC and date that the safety application project was saved on the SafeKEY.

Danger!
Be sure to validate the entire safety function!

Information:
This sequence can also be used to create a SafeKEY backup using a second SafeKEY with an identical safety application. After executing the sequence, two identical SafeKEYs are available (backup copy).

Information:
Only data relevant to the machine is copied, not all of the safety application data.
18.6 Replacing a SafeLOGIC controller

Replacing a SafeLOGIC controller involves the same procedures as a normal module replacement. When replacing a SafeLOGIC controller, the SafeKEY from the SafeLOGIC controller being replaced must be kept in order to avoid activating an old safety-related application.

Danger!

Be sure to validate the entire safety function!

18.7 Authorization (X20SL8xxx series only)

The following functions can be blocked by the standard CPU:

- Confirming a module replacement
- Acknowledging a firmware modification
- Acknowledging a SafeKEY replacement
- Backing up the SafeKEY
- Replacing a SafeLOGIC controller

This allows actions to be executed in accordance with an application-specific user concept. This option is not possible from a safety perspective, however, since these functions are executed on the standard CPU.

The following table lists the associated objects in Index "0x2402" that can be accessed using the POWERLINK library.

<table>
<thead>
<tr>
<th>Index:Subindex</th>
<th>Object description</th>
<th>Data type</th>
<th>Access</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x2402:0x00</td>
<td>NumberOfEntries</td>
<td>USINT</td>
<td>R</td>
<td>0x22</td>
<td>Number of entries in this index</td>
</tr>
<tr>
<td>0x2402:0x01</td>
<td>EnableAuthorization</td>
<td>UDINT</td>
<td>RW</td>
<td>"AENA", 0x41454E41</td>
<td>Enables authorization</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>"ADIS", 0x41444953</td>
<td>Disables authorization</td>
</tr>
<tr>
<td>0x2402:0x04</td>
<td>EnableModuleExchange</td>
<td>UDINT</td>
<td>RW</td>
<td>"UIDID", 0x55444944</td>
<td>Provides authorization to acknowledge a module replacement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>All other values</td>
<td>Does not provide authorization to acknowledge a module replacement</td>
</tr>
<tr>
<td>0x2402:0x05</td>
<td>EnableFWMismatch</td>
<td>UDINT</td>
<td>RW</td>
<td>"FWAC", 0x46574143</td>
<td>Provides authorization to acknowledge a firmware replacement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>All other values</td>
<td>Does not provide authorization to acknowledge a firmware replacement</td>
</tr>
<tr>
<td>0x2402:0x06</td>
<td>EnableSKeyExchange</td>
<td>UDINT</td>
<td>RW</td>
<td>"SKEY", 0x534B4559</td>
<td>Provides authorization to acknowledge a SafeKEY replacement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>All other values</td>
<td>Does not provide authorization to acknowledge a SafeKEY replacement</td>
</tr>
</tbody>
</table>

User requests made to the SafeLOGIC controller that are not authorized by the CPU are indicated by a steadily lit ENTER LED.
19 Quick start

With the X20SLXxxx series, it is not possible to perform a direct download via the SafePLC window in SafeDESIGN-ER. The application must be downloaded using the remote interface instead. The remote interface can be accessed from the Safety View.

The password must be entered in order to gain access (or a new password defined at the beginning). Startup must be carried out via the remote interface, as is the case with the X20SL8xxx series via its operating elements.

In addition, the AsSafety library can also be used for startup (see section "Operation via the AsSafety library").

Information:

The possibilities listed above are also available for the X20SL8xxx series starting with Safety Release 1.7.
19.1 Download mechanism

Downloading takes place in 2 steps – first to the CompactFlash card and then to the SafeLOGIC-X controller. "Download completed" indicates that the data has been applied during a download to the CompactFlash card.

Information:

The "Download completed" window in SafeDESIGNER is displayed already after downloading to the CompactFlash card. The download to the SafeLOGIC-X controller takes place afterward; it is completed by restarting the SafeLOGIC-X controller.

19.2 Visualization

In order to carry out maintenance scenarios, an HMI application must be created using library "AsSafety".

Information:

For details, see Solutions -> Technology Solutions in Automation Help.

19.3 Possible data loss

Data for the SafeLOGIC-X controller is stored on the CompactFlash card.

Information:

Note that this data can be lost when reformatting the CompactFlash card, for example.

19.4 Necessary resources

Automation Runtime resources are necessary for the safety system.

Information:

When converting from a SafeLOGIC controller to a SafeLOGIC-X controller, note that more Automation Runtime resources are needed for the SafeLOGIC-X controller.
20 Software functions

20.1 Operation via the AsSafety library

Information about using library "AsSafety" is available under Programming -> Libraries -> Safety -> AsSafety in Automation Help.

20.2 Automatic acknowledgment

As specified in previous chapters, automatic acknowledgment is usually not permitted. Provided that the user implements appropriate quality assurance measures and/or constraints, it is nevertheless possible to deviate from this to permit the following automatic acknowledgment.

Danger!

The automatic acknowledgment of SafeLOGIC controller acknowledgment requests under improper circumstances is not permitted and can lead to dangerous states.

It is the sole responsibility of the user to assess the requirements of the safety application in order to determine whether additional measures are necessary.

20.2.1 "SafeKEY exchange" acknowledgment request

The SafeDESIGNER application and machine option are saved in the safety section of the CompactFlash card (X20SLXxxx series) or on the SafeKEY (X20SL8xxx series). Replacing the CompactFlash card or SafeKEY may result in the unintended exchange of this data. The "SafeKEY exchange" acknowledgment request is meant to prevent this unintentional exchange of data.

It is important to ensure that the following criteria are met with regard to automatic acknowledgment that potentially involves CompactFlash cards or SafeKEYs:

- The SafeDESIGNER application must be completely validated on a reference machine.
- The machine options file must be completely validated on a reference machine.
- Sufficient measures must be implemented to prevent the SafeDESIGNER application or machine options file from being mixed up across different machine types.
- No test versions of the SafeDESIGNER application or machine options file are permitted.

Under the conditions specified, an automated update of the SafeDESIGNER application or machine options file is permitted to be implemented on the SafeLOGIC/SafeLOGIC-X controller.

20.2.2 "Firmware acknowledge" acknowledgment request

B&R Automation Runtime sees to it independently that the firmware versions stored on the CompactFlash card are transferred to the automation components in the network. This mechanism may cause other firmware versions to be enabled in the system than those that were active when the SafeDESIGNER application was validated. A change to the firmware of the safety modules always requires revalidation of the SafeDESIGNER application. The "Firmware acknowledge" acknowledgment request is meant to prevent an unintentional exchange of firmware versions.

It is important to ensure that the following criteria are met with regard to automatic acknowledgment that potentially involves CompactFlash cards:

- The firmware files installed on the safety modules must be completely validated together with the SafeDESIGNER application on a reference machine.
20.2.3 "UDID mismatch" acknowledgment request

The "UDID mismatch" request occurs in the following situations:

- When modules are exchanged by the user (e.g. during a service call). In this case, it is possible for the connection lines to be mixed up.
- When errors occur in the standard application that lead to a mix-up of modules.

To rule out these mix-ups, a wiring test must be performed after a "UDID mismatch" request is acknowledged. The "UDID mismatch" acknowledgment request is meant to prevent the unintentional mix-up of signals caused by exchanging a module or errors in the standard application.

- Service personnel are to be informed that the mandatory wiring test when exchanging modules must be performed independently of the automatic acknowledgment of the "UDID mismatch" request.
- It is not permitted to use more than 1 module per module type in the Automation Studio application or SafeDESIGNER application.

If the last requirement cannot be met, a "UDID mismatch" acknowledgment request is not permitted to be acknowledged automatically since it would not cover the possible mix-up of signals caused by errors in the standard application.
20.3 SafeLOGIC to SafeLOGIC communication

The safety system makes it possible to exchange safety-related information between two safety controllers (SafeLOGIC). SafeLOGIC to SafeLOGIC communication can be used to implement functions such as a global E-stop across a machine network or if a dependency exists between the safety applications on two or more machines. This makes it possible to establish a central collection point for safety information that will be responsible for distributing current values to all relevant locations.

Information:

The safety domain number is taken from the SafeLOGIC ID. In order to use SafeLOGIC to SafeLOGIC communication, the SafeLOGIC IDs must be unique. This uniqueness should be taken into consideration from the very beginning.

To help with this, a SafeLOGIC controller provides a Safety Domain Gateway (SDG) that can be used to connect additional SafeLOGIC controllers (source controllers). This gateway functionality ensures communication between several safety domains. The connection between source SafeLOGIC controllers and SDG SafeLOGIC controller is indicated in the source SafeLOGIC controller's project as an additional safety module that provides additional communication channels. An SDG SL controller itself can also be used as a source controller and connected to another SDG SL controller. This can be done to achieve cascading communication relationships.

A source SL controller can also be connected several times to the same SDG SL controller, just as it is possible for the source SL controller to communicate with several SDG SL controllers. This results in several ways for SafeLOGIC to SafeLOGIC communication to take place.
20.3.1 System requirements

The following points must be taken into account for safe data exchange between at least 2 SafeLOGIC controllers:

- SafeDESIGNER <4.1: The same SafeDESIGNER versions must be used.
- SafeDESIGNER 4.1 to 4.2.1: The SafeDESIGNER versions must be within this version range.
- SafeDESIGNER 4.2.2 and later: SafeDESIGNER 3.0 or later is permitted to be used.

The corresponding parameters in the following dialog box must be configured in order to establish a connection to the remote station.

- Configured SafeLOGIC: Remote station with which communication takes place (e.g. X20SL8100)
- SD-Version of partner SafeLOGIC: Version with which the application on the remote station was created

20.3.2 Possibilities

The system supports various communication options. The corresponding communication type is defined via parameters in Automation Studio (see "Group: SafeLOGIC to SafeLOGIC communication").

Fixed communication

- 8 BOOL channels (1 byte) per communication direction
- One source SL controller can only communicate with one SDG SL controller
- No "any to any" constellation
- Cannot be used with SafeLOGIC-X

Extended communication (Release 1.4 or later and Automation Studio 3.0.90 or later)

- Freely configurable communication channels
- Limited to 16 channels (where 8 BOOLs count as 1 channel; other data types are calculated 1:1).
- One source SL controller can communicate with several SDG SL controllers
- "Any to any" constellation possible
20.3.3 Configuration in Automation Studio

To use SafeLOGIC to SafeLOGIC communication, a SafeLOGIC controller first needs to be configured as a source SL controller. This is done in the I/O configuration.

![Configuration in Automation Studio](image)

After the "Use as source SafeLOGIC" parameter has been enabled, it is possible to define the type of SafeLOGIC to SafeLOGIC communication as fixed or extended. If the "Extended source SafeLOGIC communication" parameter is not enabled, then fixed communication is used.

Information:

Changing the type of communication (fixed or extended) at a later time may result in channel overlaps in SafeDESIGNER; the communication channels must therefore be reconnected.

The source SL controller is then connected to the SDG SL controller in the next step. This is done using the connection points in Automation Studio under the I/O configuration of a SafeLOGIC controller (X20SL80x1 and X20SL81xx). Each SafeLOGIC ID (safety domain) is specified from the connection sections using the wizard in Automation Studio.

![Connection in Automation Studio](image)
The necessary communication channels must be defined under each connection. With fixed communication, they are limited to 8 BOOL channels in each direction.

If SafeLOGIC to SafeLOGIC communication should be established between existing or separate Automation Studio projects, several things must be taken into consideration:

- SafeLOGIC IDs must be unique.
- A dummy configuration that includes all safety components must be created on the peer station.
- The dummy configuration must match the real configuration - the SafeMODULE IDs are important here.
- If the projects have multiple iCNs (intelligent controlled nodes), all iCNs must always be taken into account in the iCN project.
20.3.4 Display in SafeDESIGNER

The communication channels are also shown in the SafeDESIGNER project for the respective SafeLOGIC controller (source or SDG).

Danger!

All of the communication channels being used in the project must be mapped in both SafeDESIGNER projects using the same variable names. Channels and variable names are used to calculate a checksum that is then checked at runtime. If the checksum does not match, then the system issues a corresponding logger message in the Safety Logger and communication does not take place.

20.3.4.1 SafeDESIGNER project – Source SL controller

In the source SL controller’s SafeDESIGNER project, communication is indicated by an additional module. This module has its own node that represents the connection to this safety domain.

<table>
<thead>
<tr>
<th>Channel Name</th>
<th>Value</th>
<th>Slot</th>
<th>Y</th>
<th>CPU</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SafeLOGIC ID 2</td>
</tr>
<tr>
<td>SL1.SM1</td>
<td>IF3.ST2</td>
<td></td>
<td></td>
<td></td>
<td>x20/3200 x20 SafeLOGIC, POWERLINK V2, 24V</td>
</tr>
<tr>
<td>SL2.SM2</td>
<td>IF6.ST3</td>
<td></td>
<td></td>
<td></td>
<td>x20/3200 x20 Safe Digital In, 2xI, 24V</td>
</tr>
<tr>
<td>SL2.SM3</td>
<td>IF6.ST4</td>
<td></td>
<td></td>
<td></td>
<td>x20/3200 x20 Safe Digital Out, 4xO, 24 V, 0.5 A</td>
</tr>
</tbody>
</table>

If this module is selected, it is possible to configure its safety-related parameters (see section "Parameters for connection - Release 1.10 and later").

Fixed communication

The input channels sent from the SDG SL controller to the source SL controller and bit information about the status of the connection are listed under the module.

The output channels sent from the source SL controller to the SDG SL controller are listed under the actual SL controller in the project in section "SafeLOGIC_SafeLOGIC".
Extended communication

The input channels, output channels and bit information regarding the status of the connection are listed under the module.

Additional connection

If the source SL controller should be connected once again to the same SDG SL controller, an additional module underneath the same node is available with the necessary parameters and communication channels.

If the source SL controller should be connected to another SDG SL controller, an additional node for the safety domain as well as a module with the necessary parameters and communication channels is available.
20.3.4.2 SafeDESIGNER project – SDG SL controller

In the SDG SL controller's SafeDESIGNER project, communication is indicated by an additional module. This module has its own node that represents the connection to this safety domain.

<table>
<thead>
<tr>
<th>Channel Name</th>
<th>Value</th>
<th>Slot</th>
<th>V.</th>
<th>CPU...</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL1.5P1</td>
<td>IF5.ST1</td>
<td></td>
<td></td>
<td></td>
<td>X20501001 X20 SafeLOGIC, POWERLINK v2, SafeMC plus</td>
</tr>
<tr>
<td>SL1.5P2</td>
<td>IF6.ST1</td>
<td></td>
<td></td>
<td></td>
<td>X20501001 X20 Safe Digital In, 4x4, 24V</td>
</tr>
<tr>
<td>SL1.5P3</td>
<td>IF6.ST2</td>
<td></td>
<td></td>
<td></td>
<td>X20502120 X20 Safe Digital Out, 2x0, 24 V, 2A</td>
</tr>
<tr>
<td>SL2.5P1.C1</td>
<td>IF3.ST2</td>
<td></td>
<td></td>
<td></td>
<td>SafeLOGIC ID 2</td>
</tr>
</tbody>
</table>

Information:

No connection parameters are available in the SDG SL controller's project. They must be configured in the source SL controller's project.

Fixed communication

The input channels, output channels and bit information regarding the status of the connection are listed under the module.
Extended communication

The input channels, output channels and bit information regarding the status of the connection are listed under the module.

Additional connection

If the source SL controller should be connected once again to the SDG SL controller, an additional module underneath the same node is available with the necessary communication channels.
20.3.5 Parameters for connection - up to Release 1.9

Safety Release 1.4 or higher:

Cycle time parameters are also available for communication in order to define the "Worst_Case_Response_Time_us". As with communication that takes place with other safety modules, this is a timeout value that elapses whenever an error occurs (e.g. lost network connection).

Information:

Since SafeLOGIC to SafeLOGIC communication is represented as an additional safety module to the source SafeLOGIC controller, the parameters for the connection are available and must be configured in the source SL controller's project.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td></td>
</tr>
<tr>
<td>Min_required_FW_Rev</td>
<td>Basic Release</td>
</tr>
<tr>
<td>Optional</td>
<td>No</td>
</tr>
<tr>
<td>External_UIDID</td>
<td>No</td>
</tr>
<tr>
<td>Safety_Response_Time</td>
<td></td>
</tr>
<tr>
<td>Synchronous_Network_Only</td>
<td>Yes</td>
</tr>
<tr>
<td>Max_SDG_Powerlink_CycleTime_us</td>
<td>5000</td>
</tr>
<tr>
<td>Max_Powerlink_CycleTime_us</td>
<td>5000</td>
</tr>
<tr>
<td>Max_CPU_CrossLinkTask_CycleTime_us</td>
<td>5000</td>
</tr>
<tr>
<td>Min_SDG_Powerlink_CycleTime_us</td>
<td>200</td>
</tr>
<tr>
<td>Min_Powerlink_CycleTime_us</td>
<td>200</td>
</tr>
<tr>
<td>Min_CPU_CrossLinkTask_CycleTime_us</td>
<td>0</td>
</tr>
<tr>
<td>Worst_Case_Response_Time_us</td>
<td>100000</td>
</tr>
<tr>
<td>Max_SDG_Cycle_Time_us</td>
<td>5000</td>
</tr>
<tr>
<td>Min_SDG_Cycle_Time_us</td>
<td>1600</td>
</tr>
<tr>
<td>Slow_Connection</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 27: SafeDESIGNER parameters: Basic

Danger!

If function "External_UDID = Yes-ATTENTION" is used, incorrect specifications from the CPU can lead to safety-critical situations. Perform an FMEA (Failure Mode and Effects Analysis) in order to detect these situations and implement additional safety measures to handle them.
Group: Safety_Response_Time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous_Network_Only</td>
<td>This parameter describes the synchronization characteristics of the network being used. They are defined in Automation Studio / Automation Runtime.</td>
<td>Yes</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter value</th>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>In order to calculate the safety response time, networks must be synchronous and their cycle times must either be the same or an integer ratio of the cycle times.</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>No requirement for synchronization of the networks.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max_SDG_Powerlink_CycleTime_us</td>
<td>This parameter specifies the maximum cycle time of the POWERLINK network in which the other SafeLOGIC controller is operated.</td>
<td>5000</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>• Permissible values: 200 to 30,000 μs (corresponds to 0.2 to 30 ms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max_Powerlink_CycleTime_us</td>
<td>This parameter specifies the maximum POWERLINK cycle time used to calculate the safety response time.</td>
<td>5000</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>• Permissible values: 20 to 30,000 μs (corresponds to 0.2 to 30 ms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max_CPU_CrossLinkTask_CycleTime_us</td>
<td>This parameter specifies the maximum cycle time for copying data between the two POWERLINK networks. The value 0 means that both SafeLOGIC controllers are in the same POWERLINK network.</td>
<td>5000</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>• Permissible values: 0 to 3,000,000 μs (corresponds to 0 to 3 s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min_SDG_Powerlink_CycleTime_us</td>
<td>This parameter specifies the minimum cycle time of the POWERLINK network in which the other SafeLOGIC controller is operated.</td>
<td>200</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>• Permissible values: 20 to 30,000 μs (corresponds to 0.2 to 30 ms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min_Powerlink_CycleTime_us</td>
<td>This parameter specifies the minimum POWERLINK cycle time used to calculate the safety response time.</td>
<td>200</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>• Permissible values: 20 to 30,000 μs (corresponds to 0.2 to 30 ms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min_CPU_CrossLinkTask_CycleTime_us</td>
<td>This parameter specifies the minimum cycle time for copying data between the two POWERLINK networks. The value 0 means that both SafeLOGIC controllers are in the same POWERLINK network.</td>
<td>0</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>• Permissible values: 0 to 3,000,000 μs (corresponds to 0 to 3 s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worst_Case_Response_Time_us</td>
<td>This parameter specifies the limit value for monitoring the safety response time.</td>
<td>100000</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>• Permissible values: 3000 to 12,500,000 μs (corresponds to 3 ms to 12.5 s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td>Keep parameter "Slow_Connection" in mind when entering large values here!</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node_Guarding_Lifetime</td>
<td>This parameter specifies the maximum number of attempts to be made during the time set with parameter "Node_Guarding_Timeout_s". The purpose of these attempts is to ensure that the module is available.</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>• Permissible values: 1 to 255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td>The larger the configured value, the greater the amount of asynchronous data traffic:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• This setting is not critical to safety functionality. The time for safely cutting off actuators is determined independently using parameter "Worst_Case_Response_Time_us".</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max_SDG_Cycle_Time_us</td>
<td>This parameter specifies the maximum cycle time of the other SafeLOGIC controller used to calculate the safety response time.</td>
<td>5000</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>• Permissible values: 800 to 20,000 μs (corresponds to 0.8 to 20 ms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min_SDG_Cycle_Time_us</td>
<td>This parameter specifies the minimum cycle time of the other SafeLOGIC controller used to calculate the safety response time.</td>
<td>1600</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>• Permissible values: 800 to 20,000 μs (corresponds to 0.8 to 20 ms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow_Connection</td>
<td>This parameter specifies whether this connection is a slow connection.</td>
<td>No</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>This is a connection with a large ratio between the SafeLOGIC cycle time and the telegram runtime (affects the parameter calculation internally). Rule of thumb: "Yes" from ratio 50:1 (telegram runtime: SafeLOGIC cycle time)</td>
</tr>
<tr>
<td>No</td>
<td>Default connection, parameter calculation unchanged</td>
</tr>
</tbody>
</table>

Information:

Parameter "CPU_CrossLinkTask_CycleTime_us" is needed if the source SL and SDG SL controllers are in different networks or located on different controllers. If this is not the case, the minimum and maximum value must be set to "0".

For this parameter, the entire connection distance between the controllers must be taken into account – including copy times between the interfaces involved.
Information:

Parameter "Slow_Connection" can also be used to specify that the connection between the source SL and SDG SL controllers is slow. If a value of just a few seconds is needed for the connection timeout, then this parameter must be enabled ("Slow_Connection = Yes").
20.3.6 Parameters for connection - Release 1.10 and later

Cycle time parameters are also available for communication in order to define the maximum data transmission time. As with communication that takes place with other safety modules, this is a timeout value that elapses whenever an error occurs (e.g. lost network connection).

Information:

Since SafeLOGIC to SafeLOGIC communication is represented as an additional safety module to the source SafeLOGIC controller, the parameters for the connection are available and must be configured in the source SL controller's project.

<table>
<thead>
<tr>
<th>Materialnummern</th>
<th>X20SLB100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>X20 SafeLOGIC, POWERLINK V2, 24V, univ.</td>
</tr>
<tr>
<td>SafeMODULE ID</td>
<td>3</td>
</tr>
<tr>
<td>Import file</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min required FW Rev</td>
<td>Basic Release</td>
<td></td>
</tr>
<tr>
<td>Optional</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>External UDID</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Safety Response Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synchronous Network Only</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Safe Data Duration</td>
<td>20000</td>
<td>us</td>
</tr>
<tr>
<td>Additional Tolerated Pack Loss</td>
<td>0</td>
<td>packets</td>
</tr>
<tr>
<td>Slow Connection</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Node Guarding Lifetime</td>
<td>5</td>
<td>iterations</td>
</tr>
<tr>
<td>Max SDG Cycle Time</td>
<td>5000</td>
<td>us</td>
</tr>
<tr>
<td>Min SDG Cycle Time</td>
<td>1600</td>
<td>us</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Default value</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>Min required FW Rev</td>
<td>This parameter is reserved for future functional expansions.</td>
<td>Basic Release</td>
</tr>
<tr>
<td>Optional</td>
<td>This parameter can be used to configure the module as “optional”. Optional</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>modules do not have to be present, i.e. the SafeLOGIC controller will not</td>
<td></td>
</tr>
<tr>
<td></td>
<td>indicate that these modules are not present. However, this parameter does</td>
<td></td>
</tr>
<tr>
<td></td>
<td>not influence the module’s signal or status data.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>This module is absolutely necessary for the application.</td>
</tr>
<tr>
<td></td>
<td>The module must be in OPERATIONAL mode after startup, and safe communica-</td>
</tr>
<tr>
<td></td>
<td>tion to the SafeLOGIC controller must be established without errors (Safe-</td>
</tr>
<tr>
<td></td>
<td>ModuleOK = SAFETRUE). Processing of the safety application on the SafeLOGI-</td>
</tr>
<tr>
<td></td>
<td>C controller is delayed after startup until this state is achieved for all</td>
</tr>
<tr>
<td></td>
<td>modules with “Optional = No”.</td>
</tr>
<tr>
<td></td>
<td>After startup, module problems are indicated by a quickly blinking “MXCHG”</td>
</tr>
<tr>
<td></td>
<td>LED on the SafeLOGIC controller. An entry is also made in the logbook.</td>
</tr>
<tr>
<td>Yes</td>
<td>This module is not necessary for the application.</td>
</tr>
<tr>
<td></td>
<td>The module is not taken into account during startup, which means the safety</td>
</tr>
<tr>
<td></td>
<td>application is started regardless of whether the modules with “Optional =</td>
</tr>
<tr>
<td></td>
<td>Yes” are in OPERATIONAL mode or if safe communication is properly established</td>
</tr>
<tr>
<td></td>
<td>between these modules and the SafeLOGIC controller.</td>
</tr>
<tr>
<td></td>
<td>After startup, module problems are NOT indicated by a quickly blinking “MXCHG”</td>
</tr>
<tr>
<td></td>
<td>LED on the SafeLOGIC controller. An entry is NOT made in the logbook.</td>
</tr>
<tr>
<td>Startup</td>
<td>This module is optional. The system determines how the module will proceed</td>
</tr>
<tr>
<td></td>
<td>during startup.</td>
</tr>
<tr>
<td></td>
<td>If it is determined that the module is physically present during startup (regardless of whether it is in OPERATIONAL mode or not), then the module behaves as if “Optional = No” is set.</td>
</tr>
<tr>
<td></td>
<td>If it is determined that the module is not physically present during startup, then the module behaves as if “Optional = Yes” is set.</td>
</tr>
<tr>
<td>NotPresent</td>
<td>This module is not necessary for the application.</td>
</tr>
<tr>
<td></td>
<td>The module is ignored during startup, which means the safety application is</td>
</tr>
<tr>
<td></td>
<td>started regardless of whether the modules with “Optional = NotPresent” are physically present.</td>
</tr>
<tr>
<td></td>
<td>Unlike when “Optional = Yes” is configured, the module is not started with “Optional = NotPresent”, which optimizes system startup behavior.</td>
</tr>
<tr>
<td></td>
<td>After startup, module problems are NOT indicated by a quickly blinking “MXCHG”</td>
</tr>
<tr>
<td></td>
<td>LED on the SafeLOGIC controller. An entry is NOT made in the logbook.</td>
</tr>
<tr>
<td>External UDID</td>
<td>This parameter enables the option on the module for the expected UDID to be</td>
</tr>
<tr>
<td></td>
<td>specified externally by the CPU.</td>
</tr>
<tr>
<td>No</td>
<td>The UDID is determined by the CPU. The SafeLOGIC controller must be</td>
</tr>
<tr>
<td></td>
<td>restarted if the UDID is changed.</td>
</tr>
<tr>
<td>Yes-ATTENTION</td>
<td>The UDID is specified by a teach-in procedure during startup.</td>
</tr>
</tbody>
</table>

Table 29: SafeDESIGNER parameters: Basic

Danger!

If function "External UDID = Yes-ATTENTION" is used, incorrect specifications from the CPU can lead to safety-critical situations. Perform an FMEA (Failure Mode and Effects Analysis) in order to detect these situations and implement additional safety measures to handle them.
Group: Safety Response Time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe Data Duration</td>
<td>This parameter specifies the maximum permitted data transmission time between the SafeLOGIC controller and SafeIO module. For more information about the actual data transmission time, see section Diagnostics and service → Diagnostics tools → Network analyzer → Editor → Calculation of safety runtime of Automation Help. The cycle time of the safety application must also be added. • Permissible values: 2000 to 10,000,000 µs (corresponds to 2 ms to 10 s)</td>
<td>20000</td>
<td>µs</td>
</tr>
<tr>
<td>Additional Tolerated Packet Loss</td>
<td>This parameter specifies the number of additional tolerated lost packets during data transfer. • Permissible values: 0 to 10</td>
<td>0</td>
<td>Packets</td>
</tr>
<tr>
<td>Slow Connection</td>
<td>This parameter specifies whether this connection is classified as a slow connection.</td>
<td>No</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>This is a connection with a large ratio between the SafeLOGIC cycle time and the telegram runtime (affects the parameter calculation internally). Rule of thumb: "Yes" from ratio 50:1 (telegram runtime: SafeLOGIC cycle time)</td>
</tr>
<tr>
<td>No</td>
<td>Default connection, parameter calculation unchanged</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets per Node Guarding</td>
<td>This parameter specifies the maximum number of packets used for node guarding. • Permissible values: 1 to 255</td>
<td>5</td>
<td>Packets</td>
</tr>
<tr>
<td>Note</td>
<td>The larger the configured value, the greater the amount of asynchronous data traffic. • This setting is not critical to safety functionality. The time for safely cutting off actuators is determined independently of this.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max SDG Cycletime</td>
<td>This parameter specifies the maximum cycle time of the other SafeLOGIC controller used to calculate the safety response time. • Permissible values: 800 to 20,000 µs (corresponds to 0.8 to 20 ms)</td>
<td>5000</td>
<td>µs</td>
</tr>
<tr>
<td>Min SDG Cycletime</td>
<td>This parameter specifies the minimum cycle time of the other SafeLOGIC controller used to calculate the safety response time. • Permissible values: 800 to 20,000 µs (corresponds to 0.8 to 20 ms)</td>
<td>1600</td>
<td>µs</td>
</tr>
</tbody>
</table>

Table 30: SafeDESIGNER parameters: Safety Response Time

Information:

Parameter "Slow Connection" can also be used to specify that the connection between the source SL and SDG SL controllers is slow. If a value of just a few seconds is needed for the connection timeout, then this parameter must be enabled ("Slow Connection = Yes").
20.4 Setup mode

Setup mode supports the user during commissioning.
Setup mode is supported in hardware upgrade 1.10.2.x and later.
Automation Runtime B4.26 or higher is required to use setup mode.
Active setup mode is indicated by both the FAILSAFE LED (X20SL81xx series) or SE LED (X20SLXxxx series) as well as an entry in the logbook.
When setup mode is active, acknowledgment requests "SafeKEY exchange", "Firmware acknowledge" and "UDID mismatch" are no longer necessary.

Setup mode can be enabled and disabled using the operating elements of the "Remote Control" in SafeDESIGNER (X20SL81xx and X20SLXxxx series) or using the selector switch and acknowledgment button (X20SL81xx series).

Danger!
Setup mode is only permitted to be enabled during the commissioning of the machine/system.
Setup mode must be disabled during operation.

Danger!
After setup mode is ended, functional testing including a wiring test must be carried out.
If a SafeKEY or SafeLOGIC controller is replaced while setup mode is active, then setup mode will be disabled.
Functional testing must also be carried out in this case.
Functional testing is only permitted to be performed by personnel familiar with the safety application and its functions.
Be sure to validate the entire safety function!
21 Safety response time

The safety response time is the time between the arrival of the signal on the input channel and the output of the cutoff signal on the output.

As illustrated in the figure, the safety response time in the B&R system is composed of the following partial response times:

- Signal processing on the safe B&R input module
- Data transmission time on the bus (Input -> SafeLOGIC)
- Data transmission time on the bus (SafeLOGIC -> Output)
- Signal processing on the safe B&R output module

Danger!

The following sections are dedicated exclusively to the safety response time in the B&R system. When assessing the complete safety response time, the user must include signal processing in the sensor as well as the time until the actuator is stopped.

Be sure to validate the total lag time on the system!

Information:

The safety response time in B&R products already contains all delays caused by sampling input data (sampling theorem).

21.1 Signal processing on the safe B&R input module

The maximum I/O update time in the "I/O update time" chapter for the respective module must be taken into account when processing signals in the safe B&R input module.
21.2 Data transmission time on the bus

The following relationship must be taken into consideration for the data transmission time on the bus:

- The time needed to transfer data from the input to the SafeLOGIC controller or to the output depends on the sum of the cycle times and CPU copy times in effect on the transfer line.
- POWERLINK MN (managing node, standard CPU) settings are important for the actual timing on the bus, but they cannot be used from a safety point of view since the values can be changed at any time in the course of modifications made outside of the safety application.
- In the SafeLOGIC controller, data transmission times are monitored on the bus using openSAFETY services. The time needed to process the application on the SafeLOGIC controller is taken into account in this test (system-dependent). Monitoring is defined in SafeDESIGNER using the parameters in parameter group "Safety Response Time".

Information:
The safety components located in this network segment could be cut off by the SafeLOGIC controller if modified parameters on the POWERLINK MN alter the data transmission times on the bus so that they lie outside of the SafeDESIGNER parameters defined in parameter group "Safety Response Time".

Information:
The safety components located in this network segment could be cut off by the SafeLOGIC controller if EMC disturbances cause data failures that fall outside of the SafeDESIGNER parameters defined in parameter group "Safety Response Time".

Calculating the maximum data transmission time - up to Release 1.9:

- The total max. data transmission time on the bus is calculated by adding parameter "Worst_Case_Response_Time_us" for the safe input module and parameter "Worst_Case_Response_Time_us" for the safe output module. When doing this, be sure to check parameter "Manual_Configuration". If parameter "Manual_Configuration" is set to "No", the value specified for parameter "Default_Worst_Case_Response_Time_us" is used.
- Special case: Local inputs on the X20SLX module:
The total max. data transmission time on the bus is calculated by adding parameter "Cycle_Time_max_us" + 2000 µs and parameter "Worst_Case_Response_Time_us" for the safe output module. When doing this, be sure to check parameter "Manual_Configuration". If parameter "Manual_Configuration" is set to "No", the value specified for parameter "Default_Worst_Case_Response_Time_us" is used.
Calculating the maximum data transmission time - Release 1.10 and later:
The following parameters are relevant for calculating the data transmission time between the safe input module and safe output module; parameter "Manual Configuration" deserves special attention.

- Relevant parameters for "Manual Configuration = No":
 - "PacketLoss1": Parameter "Default Additional Tolerated Packet Loss" of group "Safety Response Time Defaults" of the SafeLOGIC controller
 - "DataDuration1": Parameter "Default Safe Data Duration" of group "Safety Response Time Defaults" of the SafeLOGIC controller
 - "NetworkSyncCompensation1": 12 ms
 - "PacketLoss2": Same as "PacketLoss1"
 - "DataDuration2": Same as "DataDuration1"
 - "NetworkSyncCompensation2": Same as "NetworkSyncCompensation1"

- Relevant parameters for "Manual Configuration = Yes":
 - "PacketLoss1": Parameter "Additional Tolerated Packet Loss" of group "Safety Response Time" of the safe input module
 - "DataDuration1": Parameter "Safe Data Duration" of group "Safety Response Time" of the safe input module
 - "NetworkSyncCompensation1": 12 ms
 - "PacketLoss2": Parameter "Additional Tolerated Packet Loss" of group "Safety Response Time" of the safe output module
 - "DataDuration2": Parameter "Safe Data Duration" of group "Safety Response Time" of the safe output module
 - "NetworkSyncCompensation2": Same as "NetworkSyncCompensation1"

- Special case: Local inputs on the X20SLX module:
 - "PacketLoss1": 0
 - "DataDuration1": Parameter "Cycle Time max" of group "Module Configuration" of the X20SLX + 2000 μs
 - "NetworkSyncCompensation1": 0 ms

- Special case: Local outputs on the X20SLX module:
 - "PacketLoss2": 0
 - "DataDuration2": Parameter "Cycle Time max" of group "Module Configuration" of the X20SLX + 2000 μs
 - "NetworkSyncCompensation2": 0 ms

- Special case: Linking local inputs with local outputs on the X20SRT module:
 - "PacketLoss1": 0
 - "PacketLoss2": 0
 - "DataDuration1": Parameter "Cycle time" of group "General"
 - "DataDuration2": Parameter "Cycle time" of group "General"
 - "NetworkSyncCompensation1": 0 ms
 - "NetworkSyncCompensation2": 0 ms

The following equation is used to calculate the maximum data transmission time between the safe input module and safe output module:

Maximum data transmission time = (PacketLoss1+1) * DataDuration1 + NetworkSyncCompensation1 + (PacketLoss2+1) * DataDuration2 + NetworkSyncCompensation2

Information:
In addition to the data transmission time on the bus, the time for signal processing in the safe B&R input and output module must be taken into account (see section 21 "Safety response time").
Information:
For more information about the actual data transmission time, see Automation Help, section Diagnostics and service → Diagnostics tools → Network analyzer → Editor → Calculation of safety runtime. The cycle time of the safety application must also be added.

21.3 Signal processing on the safe B&R output module

The maximum I/O update time in the "I/O update time" chapter for the respective module must be taken into account when processing signals in the safe B&R output module.

21.4 Minimum signal lengths

The parameters in group "Safety Response Time" in SafeDESIGNER influence the maximum number of data packets that are permitted to fail without triggering a safety response. These parameters therefore act like a switch-off filter. If several data packets are lost within the tolerated amount, safety signals may not be detected if their low phase is shorter than the determined data transmission time.

Danger!

Lost signals can result in serious safety errors. Check all signals to determine the smallest possible pulse length and make sure that it is larger than the determined data transmission time.

Suggested solution:
• The switch-on filter can be used to extend the low phase of a signal on the input module.
• Low phases of signals from the SafeLOGIC controller can be lengthened with restart interlock functions or timer function blocks.
22 Intended use

Danger!

Danger from incorrect use of safety-related products/functions

Proper functionality is only ensured if the products/functions are used in accordance with their intended use by qualified personnel and the provided safety information is taken into account. The aforementioned conditions must be observed or covered by supplementary measures on your own responsibility in order to ensure the specified protective functions.

22.1 Qualified personnel

Use of safety-related products is restricted to the following persons:

- Qualified personnel who are familiar with relevant safety concepts for automation technology as well as applicable standards and regulations
- Qualified personnel who plan, develop, install and commission safety equipment in machines and systems

Qualified personnel in the context of this manual's safety guidelines are those who, because of their training, experience and instruction combined with their knowledge of relevant standards, regulations, accident prevention guidelines and operating conditions, are qualified to carry out essential tasks and recognize and avoid potentially dangerous situations.

In this regard, sufficient language skills are also required in order to be able to properly understand this manual.

22.2 Application range

The safety-related B&R control components described in this manual were designed, developed and manufactured for special applications for machine and personnel protection. They are not suitable for any use involving serious risks or hazards that could lead to the injury or death of several people or serious environmental impact without the implementation of exceptionally stringent safety precautions. In particular, this includes the use of these devices to monitor nuclear reactions in nuclear power plants, flight control systems, air traffic control, the control of mass transport vehicles, medical life support systems and the control of weapon systems.

When using safety-oriented control components, the safety precautions applying to industrial control systems (e.g. the provision of safety devices such as emergency stop circuits, etc.) must be observed in accordance with applicable national and international regulations. The same applies for all other devices connected to the system, e.g. drives or light curtains.

The safety guidelines, information about connection conditions (nameplate and documentation) and limit values specified in the technical data must be read carefully before installation and commissioning and must be strictly observed.
22.3 Security concept

B&R products communicate via a network interface and were developed for integration into a secure network. The network and B&R products are affected by the following hazards (not a complete list):

- Unauthorized access
- Digital intrusion
- Data leakage
- Data theft
- A variety of other types of IT security breaches

It is the responsibility of the operator to provide and maintain a secure connection between B&R products and the internal network as well as other networks, such as the Internet, if necessary. The following measures and security solutions are suitable for this purpose:

- Segmentation of the network (e.g. separation of the IT and OT networks)
- Firewalls for the secure connection of network segments
- Implementation of a security-optimized user account and password concept
- Intrusion prevention and authentication systems
- Endpoint security solutions with modules for anti-malware, data leakage prevention, etc.
- Data encryption

It is the responsibility of the operator to take appropriate measures and to implement effective security solutions. B&R Industrial Automation GmbH and its subsidiaries are not liable for damages and/or losses resulting from, for example, IT security breaches, unauthorized access, digital intrusion, data leakage and/or data theft.

Before B&R releases products or updates, they are subjected to appropriate functional testing. Independently of this, the development of customized test processes is recommended in order to be able to check the effects of changes in advance. Such changes include, for example:

- Installation of product updates
- Notable system modifications such as configuration changes
- Import of updates or patches for third-party software (non-B&R software)
- Hardware replacement

These tests should ensure that implemented security measures remain effective and that systems behave as expected.
22.4 Safety technology disclaimer

The proper use of all B&R products must be guaranteed by the customer through the implementation of suitable training, instruction and documentation measures. The guidelines set forth in system user's manuals must be taken into consideration here as well. B&R has no obligation to provide verification or warnings with regard to the customer's purpose of using the delivered product.

Changes to the devices are not permitted when using safety-related components. Only certified products are permitted to be used. Currently valid product versions in each case are listed in the corresponding certificates. Current certificates are available on the B&R website (www.br-automation.com) in the Downloads section for the respective product. The use of non-certified products or product versions is not permitted.

All relevant information regarding these safety products must be read in the latest version of the related data sheet and the corresponding safety notices observed before the safety products are permitted to be operated. Certified data sheets are available on the B&R website (www.br-automation.com) in the Downloads section for the respective product.

B&R and its employees are not liable for any damages or loss resulting from the incorrect use of these products. The same applies to misuse that may result from specifications or statements made by B&R in connection with sales, support or application activities. It is the sole responsibility of the user to check all specifications and statements made by B&R for proper application as it pertains to safety-related applications. In addition, the user assumes sole responsibility for the proper design of the safety function as it pertains to safety-related applications.

22.5 X20 system characteristics

Because all X20 safety products are seamlessly integrated into the B&R base system, the same system characteristics and user notices from the X20 system user's manual also apply to X20 safety products.

Warning!

Possible failure of safety function

Malfunction of module due to unspecified operating conditions

The notes for installation and operation of the modules provided in the applicable documents must be observed.

In this regard, this means the content and user notices in the following applicable documentation must be observed for X20 safety products:

- X20 system user's manual
- Installation / EMC guide
22.6 Installation notes for X20 modules

Products must be protected against impermissible dirt and contaminants. Products are protected from dirt and contaminants up to pollution degree II as specified in the IEC 60664 standard.

Pollution degree II can usually be achieved in an enclosure with IP54 protection, but uncoated modules are NOT permitted to be operated in condensing relative humidity and temperatures under 0°C.

The operation of coated modules is allowed in condensing relative humidity.

Danger!

Pollution levels higher than specified by pollution degree II in standard IEC 60664 can result in dangerous failures. It is extremely important that you ensure a proper operating environment.

Danger!

In order to guarantee a specific voltage supply, a SELV power supply that conforms to IEC 60204 must be used to supply the bus, SafeIO and SafeLOGIC controller. This also applies to all digital signal sources that are connected to the modules.

If the power supply is grounded (PELV system), then only a GND connection is permitted for grounding. Grounding types that have ground connected to +24 VDC are not permitted.

The power supply of X20 potential groups must generally be protected using a fuse with a maximum of 10 A. For more information, see chapter "Mechanical and electrical configuration" of the X20 or X67 user's manual.

22.7 Safe state

If an error is detected by the module (internal or wiring error), the modules enable the safe state. The safe state is structurally designed as a low state or cutoff and cannot be modified.

Danger!

Applications in which the safe state must actively switch on an actuator cannot be implemented with this module. In these cases, other measures must be taken to meet this safety-related requirement (e.g. mechanical brakes for hanging load that engage on power failure).

22.8 Mission time

All safety modules are designed to be maintenance-free. Repairs are not permitted to be carried out on safety modules.

All safety modules have a maximum mission time of 20 years.

This means that all safety modules must be taken out of service one week (at the latest) before the expiration of this 20-year time span (starting from B&R's delivery date).

Danger!

Operating safety modules beyond the specified mission time is not permitted! The user must ensure that all safety modules are replaced by new safety modules or removed from operation before their mission time expires.
23 Release information

A manual version always describes the respective range of functions for a given product set release. The following table shows the relationship between manual versions and releases.

<table>
<thead>
<tr>
<th>Manual version</th>
<th>Valid for</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.141</td>
<td></td>
</tr>
<tr>
<td>V1.140</td>
<td></td>
</tr>
<tr>
<td>V1.131</td>
<td></td>
</tr>
<tr>
<td>V1.130</td>
<td></td>
</tr>
<tr>
<td>V1.123</td>
<td></td>
</tr>
<tr>
<td>V1.122</td>
<td></td>
</tr>
<tr>
<td>V1.121</td>
<td></td>
</tr>
<tr>
<td>V1.120</td>
<td></td>
</tr>
<tr>
<td>V1.111</td>
<td></td>
</tr>
<tr>
<td>V1.110</td>
<td></td>
</tr>
<tr>
<td>V1.103</td>
<td></td>
</tr>
<tr>
<td>V1.102</td>
<td></td>
</tr>
<tr>
<td>V1.101</td>
<td></td>
</tr>
<tr>
<td>V1.100</td>
<td></td>
</tr>
<tr>
<td>V1.92</td>
<td></td>
</tr>
<tr>
<td>V1.91</td>
<td></td>
</tr>
<tr>
<td>V1.90</td>
<td></td>
</tr>
<tr>
<td>V1.80</td>
<td></td>
</tr>
<tr>
<td>V1.71</td>
<td></td>
</tr>
<tr>
<td>V1.70</td>
<td></td>
</tr>
<tr>
<td>V1.64</td>
<td></td>
</tr>
<tr>
<td>V1.63.2</td>
<td></td>
</tr>
<tr>
<td>V1.63.1</td>
<td></td>
</tr>
<tr>
<td>V1.63</td>
<td></td>
</tr>
<tr>
<td>V1.62</td>
<td></td>
</tr>
<tr>
<td>V1.61</td>
<td></td>
</tr>
<tr>
<td>V1.60</td>
<td></td>
</tr>
<tr>
<td>V1.52.1</td>
<td></td>
</tr>
<tr>
<td>V1.52</td>
<td></td>
</tr>
<tr>
<td>V1.51</td>
<td></td>
</tr>
<tr>
<td>V1.50.1</td>
<td></td>
</tr>
<tr>
<td>V1.50</td>
<td></td>
</tr>
<tr>
<td>V1.42</td>
<td></td>
</tr>
<tr>
<td>V1.41</td>
<td></td>
</tr>
<tr>
<td>V1.40</td>
<td></td>
</tr>
<tr>
<td>V1.20</td>
<td></td>
</tr>
<tr>
<td>V1.10</td>
<td></td>
</tr>
<tr>
<td>V1.02</td>
<td></td>
</tr>
<tr>
<td>V1.01</td>
<td></td>
</tr>
<tr>
<td>V1.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manual version</th>
<th>Version</th>
<th>Starting with</th>
<th>Up to</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.02</td>
<td>Product set</td>
<td>Release 1.0</td>
<td>Release 1.1</td>
</tr>
<tr>
<td>V1.01</td>
<td>SafeDESIGNER</td>
<td>2.58</td>
<td>2.69</td>
</tr>
<tr>
<td>V1.00</td>
<td>Firmware</td>
<td>2.56</td>
<td>2.69</td>
</tr>
<tr>
<td></td>
<td>Upgrades</td>
<td>1.0.0.0</td>
<td>1.1999.999</td>
</tr>
</tbody>
</table>

Table 31: Release information

24 Version history

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.141</td>
<td>April 2019</td>
<td>• Chapter 4 "Technical data": Updated standards.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated chapter 22.3 "Security concept".</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated chapter 22.6 "Installation notes for X20 modules".</td>
</tr>
<tr>
<td>1.140</td>
<td>February 2019</td>
<td>• Chapter 4 "Technical data": Limited installation elevation to 2000 m.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chapter 17.1 "Parameters in the I/O configuration": Added parameter "Blackout mode".</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chapter 17.2 "Parameters in SafeDESIGNER": Added filter value to danger notice.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chapter 17.3 "Channel list": Added new channels.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chapter 21.2 "Data transmission time on the bus": Updated calculation of maximum data transmission time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chapter 22 "Intended use": Added danger notice.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added chapter "Security notes".</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chapter 22.5 "X20 system characteristics": Added warning notice.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated standards.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Editorial changes.</td>
</tr>
<tr>
<td>1.121</td>
<td>May 2018</td>
<td>Added coated modules.</td>
</tr>
</tbody>
</table>

Table 32: Version history
<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Comment</th>
</tr>
</thead>
</table>
| 1.120 | November 2017 | • Chapter 4 "Technical data":
| | | − Updated standards and safety characteristics.
| | | − Added timing precision.
| | | − Added input characteristics per EN 61131-2.
| | | − Updated input resistance.
| | | − Added line length between pulse output and input.
| | | − Updated derating.
| | | • Chapter 16 "Restart behavior": Updated description.
| | | • Chapter 17.2 "Parameters in SafeDESIGNER": Group "Safety Response Time Defaults": Updated parameter "Default Safe Data Duration".
| | | • Chapter 17.3 "Channel list": Added channel "SafeOsState" and updated "SLXbootState".
| | | • Chapter 18.5 "SafeKEY or safety section of the CompactFlash card": Updated description.
| | | • Chapter 20.3 "SafeLOGIC to SafeLOGIC communication": Added system requirements.
| | | • Chapter 20.3.6 "Parameters for connection - Release 1.10 and later": Group "Safety Response Time": Updated parameter "Safe Data Duration".
| | | • Chapter 21.2 "Data transmission time on the bus": Updated description and added information.
| | | • Chapter 22.6 "Installation notes for X20 modules": Updated danger notice.
| | | • Updated standards.
| | | • Editorial changes.
| 1.110 | March 2017 | • Chapter 4 "Technical data":
| | | − Updated standards and safety characteristics.
| | | − Updated "Communication with each other".
| | | − Added "Max. number of SafeMOTION axes".
| | | − Updated "Max. number of openSAFETY nodes".
| | | − Updated "Input current at 24 VDC".
| | | − Updated "Input resistance".
| | | − Updated "Braking voltage when switching off inductive loads".
| | | − Updated "Peak short-circuit current".
| | | − Added "Max. switching frequency".
| | | − Removed "Peak output current".
| | | • Chapter 7 "Connection examples": Added information.
| | | • Chapter 17.2 "Parameters in SafeDESIGNER":
| | | − Group "Basic": Added information and new parameters.
| | | − Group "Safety Response Time Defaults": Removed parameters.
| | | − Group "Module Configuration": Removed parameters.
| | | • Chapter 17.3 "Channel list": Updated SLXioCycle and added information.
| | | • Chapter 18.5.2 "Acknowledging a SafeKEY replacement": Added information.
| | | • Chapter 19 "Quick start": Added new subsections.
| | | • Chapter 20.1 "Operation via the AsSafety library": Removed content, added reference to Automation Help.
| | | • Chapter 20.4 "Setup mode": Added.
| | | • Chapter 20.3.6 "Parameters for connection - Release 1.10 and later": Removed parameters.
| | | • Chapter 21.2 "Data transmission time on the bus": Added information about data transmission time.
| | | • Chapter 22.7 "Safe state": Updated danger notice.
| 1.103 | August 2016 | • Chapter 4 "Technical data": Updated standards.
| 1.102 | July 2016 | • Chapter 4 "Technical data":
| | | − Updated standards.
| | | − Updated technical data.
| 1.101 | April 2016 | First edition as a product-specific manual

Table 32: Version history
25 EC declaration of conformity

This document was originally written in the German language. The German edition therefore represents the original documentation in accordance with the 2006/42/EC Machinery Directive. Documents in other languages are to be interpreted as translations of the original documentation.

Product manufacturer:
B&R Industrial Automation GmbH
B&R Strasse 1
5142 Eggelsberg
Austria
Telephone: +43 7748 6586-0
Fax: +43 7748 6586-26
office@br-automation.com

The place of jurisdiction, in accordance with article 17 of the European Convention on Courts of Jurisdiction and Enforcement, is A-4910 Ried im Innkreis, Austria, commercial register court: Ried im Innkreis, Austria

Commercial register number: FN 111651 v.

The place of fulfillment in accordance with article 5 of the European Convention on Courts of Jurisdiction and Enforcement is A-5142 Eggelsberg, Austria

VATIN: ATU62367156

The EC declarations of conformity for B&R products can be downloaded from the B&R website www.br-automation.com.